Теория вероятности формулы и примеры решения задач. Основные формулы теории вероятности

Теория вероятности – формулы нахождения с примерами и решениями

Теория вероятности формулы и примеры решения задач. Основные формулы теории вероятности

Изучение вероятности наступления того или иного события берёт своё начало со Средних веков. Первоначально наблюдаемые закономерности не имели математического описания и основывались на различных эмпирических фактах. Ранние работы были непосредственно связаны с азартными играми. Французские учёные Паскаль и Ферма пытались выявить и рассчитать закономерности при бросании костей.

Независимо от них этим вопросом занимался и голландский физик Гюйгенс. В своей работе он оперировал такими понятиями, как величина шанса, математическое ожидание, цена случайности. Он первый, кто попробовал применить теоремы сложения и умножения в описание вероятности.

Фундаментальное значение для развития науки имели труды Бернулли, Байеса, Лапласа и Пуассона. Их стараниями были сформулированы и доказаны предельные теоремы, предложены первые формулы и примеры. В теории вероятности начали использовать анализ ошибочного наблюдения. Но лишь Карл Гаусс детально смог разобраться в нормальном распределении случайной величины.

В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году.

Предложил её академик СССР Андрей Колмогоров. Руководствуясь идеями теории множеств, меры и интегрирования, он смог систематизировать аксиомы и с их помощью описать классическую теорию вероятности.

На основании его работ была создана новая теория — случайных процессов.

В его систему входит:

  • алгебра событий — состоит из множества подмножеств, называемых событиями и их пространства;
  • существование возможности появления событий — каждому случаю приписывается в соответствие вещественная вероятность наступления;
  • нормировка — состояние, при котором вещественное число имеет вероятность свершения равное единице;
  • аддитивность — если 2 события не пересекаются, их вероятность находится суммированием.

Объекты, удовлетворяющие системе, были названы полем вероятности (вероятностным пространством). Было принято, что аксиомы не могут противоречить друг другу. Аксиоматизация позволила привести все предположения к строгому математическому виду и стала восприниматься как один из разделов математического вычисления.

Предметом изучения науки являются закономерности, появляющиеся в случайных событиях, результат которых нельзя установить заранее. Но не все эксперименты можно изучать с помощью теории, а лишь те, что повторяются при одних и тех же условиях.

Существует понятие «статистической устойчивости».

Если существует некоторое событие «А», которое может наступить в результате события или не произойти, то часть экспериментов должна стабилизироваться.

При этом с увеличением числа экспериментов вероятность повторения стремится к определённому числу Р(А). Оно и является характеристикой, определяющей степень возможности наступления события «А».

Объяснить основы теории вероятности для чайников можно с помощью классических понятий:

  1. Вероятность, что событие «А» сможет произойти описывается выражением: Р (А) = m/n, где: n — общее количество исходов эксперимента, имеющих равные возможности; m — число исходов, соответствующих событию «А».
  2. Для геометрического определения вместо чисел используется мера. В числитель формулы подставляется показатель, выражающий количество благоприятных исходов наступления рассматриваемого события, а в знаменатель – геометрическая мера. Например, ширина, плотность, объём.
  3. При расчётах принимается, что полная группа событий образует вероятность равную единице: P (A1) + P (A2) + + P (An) = 1, при этом сумма противоположных событий также будет равна одному.
  4. Шанс, что одно из двух несовместимых событий обязательно случится, определяется сложением этих вероятностей. Это формулировка справедлива и к любому количеству ожидаемых исходов: P (C +B +A) = Р(С) + Р (B) +P (A).
  5. Исход, что любое из двух событий сбудется, равен вероятности суммы без учёта возможного их совместного появления: P (А+В) = Р (А) + Р (B) — P (АВ).

Основополагающими формулами являются выражения Байеса и Бернулли.

Согласно первому, если существует гипотеза «Вн», а событие уже наступило, вероятность её правдивости определяется как Pа (Вн) = Р (Вн) * Рв (А) / Р (А). Это выражение ещё называют формулой полной вероятности. Равенство же Бернулли помогает оценить вероятность, что конкретное событие «А» случится n количество раз при m вариантах: P = C n * p n * qn — m.

Алгоритм решения

Теория вероятностей используется, когда необходимо сделать прогноз на выпадение того или иного шанса в эксперименте. Случайность является основным понятием предмета.

Она обозначает явление, для которого невозможно точно вычислить периодичность наступления, поэтому в задачах находят именно число возможностей.

По своей сути вероятность — функция, способная принимать 3 значения:

  • ноль — ожидание никогда не выполнится;
  • единица — событие произойдёт при любых условиях;
  • паритет — существует равная возможность выполнения или невыполнения ожидания.

Чтобы высчитать случайность, рекомендуется придерживаться разработанного алгоритма. Следует внимательно изучить задание и определить, вероятность чего необходимо вычислить, а также события, от которых случайность будет изменяться.

Определив схему задачи, подобрать формулу и, подставив в неё все имеющиеся данные, рассчитать шанс.

Чтобы правильно определиться с нужной схемой, необходимо знать о количестве экспериментов, существовании между ними зависимости, возможности применения нескольких гипотез.

Для понятия принципа нахождения случайности часто предлагается к решению следующая задача. В закрытом ящике лежит 6 разноцветных перемешанных между собой шаров. Из них 2 красного цвета, 3 зелёного и 1 белый. Нужно посчитать, насколько шансов достать белый шар меньше, чем цветной.

Случайность доставания цветного шара обозначают как событие «А». Согласно определению вероятность «А» определяется отношением благоприятствующих шансов к общему числу исходов.

Существует 6 различных возможностей вытянуть шар, из них 5 относятся к благоприятным, поэтому эксперимент покажет, что вероятность достать из ящика цветной шар будет составлять P = 5 / 6 = 0,83(3).

Это и есть показатель оценки степени случайности.

Таким способом можно узнать различную вероятность любого исхода, не прибегая к собиранию статистики и её анализу, то есть решить задачу математически, как, например, следующую.

В таксопарке используется 2 синих, 9 красных и 4 чёрных машины. Нужно определить, какая существует возможность приезда по вызову красного автомобиля. Решение простое.

Так как всего имеется 15 машин, вероятность приезда именно красной составит Р = 9/15 или 0,6.

Теорема Муавра — Лапласа

Это предельное определение, предложенное Лапласом в 1812 году. В основе теоремы используется формула Бернулли, но применяется она к довольно большому количеству экспериментов.

Суть её в следующем: если при независимых экспериментах n существует вероятность свершения случайного события N равная нулю или единице, при этом число испытаний равняется m, искомое значение близко к интегральной функции Лапласа.

Стандартные значения, соответствующие нормальному распределению, сведены в статистические таблицы. Взять их можно в решебниках задач по теории. Под приведёнными значениями понимается площадь кривой от нуля до числа x. Например, если придумать какую-либо величину площади между числами 0 и 2,34, согласно таблице она составит 0,49036.

При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!.

Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение.

Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.

Реальная формула, описывающая теорему сложна, поэтому используется приближённая:

Р(m) = 1 / ((2p*n*p*q)1/2) exp (-X2m/2).

Использовать её рекомендуют только при значениях событий больше 20, а экспериментов 100. Например, брак выпускаемых изделий составляет 15%. Поступает товар в упаковках по 100 штук. Нужно найти вероятность, что случайно взятая коробка будет укомплектована 13 бракованными изделиями. При этом число товара низкого качества в упаковке не превысит 20.

За испытание необходимо принять изготовление. Вероятность появления события, которое необходимо искать составит p = 0,15. Далее, находится случайность: n * p = 15 и n * p * q = 12,75. Исходные данные подставляют в формулу Лапласа:

Таким образом, примерно 9,5% упаковок от общего количества содержат 13 товаров плохого качества, а в 92% случаях число изделий с браком не превышает 20.

Сочетание взаимных событий

При рассмотрении задач может возникнуть вопрос, как различные события могут зависеть друг от друга. Для характеристики их взаимосвязи вводится понятие условная вероятность. Например, имеются 2 случайных исхода одного эксперимента «А» и «В». Тогда условной вероятностью первого события «А» при условии, что второе произошло, называется отношение P (AB) / P (B).

Необходимо определить, с какой вероятностью в семье с ребёнком-девочкой родится мальчик. За вероятность появления в семье двух мальчиков нужно взять «А», а за ребёнка противоположного пола событие «В».

Существует 4 возможных исхода, поэтому справедливо будет записать: P (AB) = 1/4, P(B) = 3/4. Подставив эти значения в формулу можно рассчитать вероятность: P (A/B) = (1/4) / (3/4) = 0,3.

Первый исход считается независимым от второго, если наступление события «В» не оказывает влияние.

Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.

Для решения задачи вначале нужно найти шанс, что первый билет будет с выигрышем: P (A) = 3/26 = 0,115. Затем рассчитать вероятность двух выигрышей подряд: P(AB) = P(A) * P(B) = (3/26) * (2/25) = 0,009.

Это довольно простые задачи, но существуют задания, для решения которых понадобится применять несколько формул. Такой расчёт вероятности наступления того или иного события может быть трудным, требующим повышенного внимания.

Для облегчения вычислений существуют специальные интернет-порталы. Они предлагают рассчитать исход события даже тем, кто и вовсе не разбирается в теории. Например, allcalc.ru, kontrolnaya-rabota.ru, matburo.ru, math.semestr.ru.

На этих сайтах от пользователей требуется лишь заполнить предлагаемые формы исходными данными и нажать кнопку «Рассчитать». Все калькуляторы совмещают в себе быстроту нахождения ответа и ознакомление с подробным описанием решения.

Как решать задачи на вероятность: от простого к сложному

Теория вероятности формулы и примеры решения задач. Основные формулы теории вероятности

Для успешной сдачи ЕГЭ нужно знать, как решать задачи на вероятность. Эту тему проходят в школе уже в 8-9 классе. Но многие ученики приходят в тупик при решении этих задач. Для их решения нужно быть очень внимательным и грамотно работать с формулами.

В этой статье разберем задачи по теории вероятностей по принципу от простого к сложному, научимся работать с формулой и разберем особенности решения отдельных типов задач.

Что такое вероятность простыми словами

Вся наша жизнь состоит из случайных событий, которые могут либо произойти, либо нет.

Например, вы сегодня идете на экзамен, по которому лучше остальных знаете один билет, достанется он именно вам или нет – случайность.

Так как билетов всего 20, а вам нужно вытянуть всего 1, мы можем определить вероятность, с которой вам достанется желаемый билет. Эта вероятность будет составлять 1 шанс к 20 возможным, то есть 1 к 20 или 1/20 или 0,05.

Формула вероятности

Формула для вычисления вероятности события выглядит следующим образом:где P – вероятность события;

m —  число вариантов, которые нас устраивают (число благоприятных исходов);

n – общее количество вариантов (возможных исходов).

Логично, что число благоприятных исходов всегда меньше, чем общее количество исходов, т.е. меньшее число мы делим на большее. Таким образом вероятность всегда находится в диапазоне от 0 до 1.

Приведем еще пример.

Задача 1

У нас есть пакет, в котором лежит 15 шариков, 9 из которых фиолетового цвета, а остальные белые. Какова вероятность вытащить из пакета один белый шарик?

Решение. Итак, общее количество белых шариков 15 – 9 = 6 штук, следовательно количество благоприятных исходов нашего события – 6. Общее количество возможных исходов – 15. Подставляем в формулу и получаем:

Таким образом, вероятность вытащить белый шарик равна 6/15.

Ответ: 6/15

Задачи на вероятность нужно читать внимательно, чтобы не допускать досадных ошибок. Например, вот в такой задаче.

Задача 2

В автомате, продающем, маленькие мячики есть мячи 5 цветов: 21 синих, 30 красных, 15 зеленых, 8 белых, а остальные желтые. Всего в автомате 90 мячиков. Какова вероятность, что Коле достанется мяч не синего цвета.

Решение. Мы обращаем внимание на то, что Коле должен достаться мяч НЕ синего цвета, а любого другого. Многие ученики просто не замечают частицу НЕ и ищут вероятность выпадения именно синего мяча, и естественно допускаю ошибку. Внимательно читаем условия задачи.

Итак, общее количество возможных вариантов – 90. Нам нужен любой мяч, кроме синего. Следовательно, количество вариантов, когда выпадет не синий мяч равно 90 – 21 = 69. Таким образом, вероятность того, что выпадет мячик любого цвета, кроме синего, равна:

Ну и разберем еще задачу.

Задача 3

На конкурсе выступают 11 участников из Казани, 6 участников из Нижнего Новгорода, 3 участника из Москвы и 7 участников из Твери. Порядок выступления в конкурсе определяется жеребьевкой. Какова вероятность того, что последним будем выступать конкурсант из Нижнего Новгорода? Результат округлите до сотых.

Решение. Итак, представим, что все конкурсанты подошли к барабану, где лежат номерки и тянут по одному номерку. Общее количество конкурсантов n = 11 + 6 + 3 + 7 = 27.

Нас интересует, какова вероятность того, что один из конкурсантов из Нижнего Новгорода вытянет номерок с цифрой 27. Конкурсантов из Нижнего Новгорода всего 6, следовательно m = 6.

Таким образом, вероятность будет равна:Как представить в виде десятичной дроби?

Очень просто. Нужно разделить 6,0000 на 27 уголком. Тогда вы получите 0,222… или округляя до сотых 0,22.

Ответ: 0,22

Как решать задачи с перечислением

Этот тип задач отличается от предыдущих лишь тем, что в задаче предметы поименованы. А вычисления выполняются по той же формуле:

Приведем пример такой задачи.

Задача 4

В портфеле у Васи лежали учебники по алгебре, геометрии, химии, биологии и литературе. Вася не глядя вынимает один учебник, какова вероятность того, что он вытянул алгебру?

Решение. Не смотря на то, что теперь предметы поименованы, принцип решения задачи остался прежним. Общее количество вариантов (т.е. учебников в портфеле) – 5.  Нужный нам вариант (т.е. учебник по алгебре) – 1. Следовательно, вероятность нужного нам события равна:

Р =  = 0,2

Ответ: 0,2

Как решать задачи с фиксированными элементами: разбираем на примере

Задачи на вероятность с фиксированными элементами сводятся к стандартным задачам на вероятность, но из элементов m и n нужно вычесть 1.

Давайте разберемся на примере.

Задача 5

Задача 8. В соревнованиях по борьбе участвуют 73 участника. Из них 25 участников из Москвы, в том числе Б. Егоров. На пары участники разбиваются с помощью жеребьевки. Какова вероятность того, что противником Б. Егорова станет участник из Москвы? Результат округлите до сотых.

Решение. В этой задаче есть фиксированный элемент – Б. Егоров. Это фиксированный элемент мы должны вычесть из элементов m и n.

Итак, общее количество участников – 73. Но Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, его мы исключаем из общего количества и получаем n = 72. Нас интересуют только участники из Москвы, их 25. Но опять же Б.

Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, количество устраивающих нас вариантов m = 24. А теперь считаем по нашей формуле:Таким образом, вероятность того, что противником Б.

Егорова станет участник из Москвы равна 0,33.

Ответ: 0,33

Еще раз обратим внимание. Если в задаче есть фиксированный элемент, то мы вычитаем единицу из m и n, а дальше решаем задачу по стандартной формуле нахождения вероятности.

Как решать задачи с двумя кубиками: используем таблицы

Таблицы полезны при решении задач, где речь идет о двух игральных кубиках. Например.

Задача 6

Петя подбросил два игральных кубика. Какова вероятность того, что в сумме выпадет не менее 9 очков.

Решение. Вот в таких задачах удобнее всего построить таблицу. По горизонтали мы размещаем очки, которые могут выпасть на первом кубике, т.е. числа от 1 до 6. А по вертикали мы размещаем числа, которые могут выпасть на втором кубике, т.е. также числа от 1 до 6. Начертим таблицу:

Далее заполняем таблицу. Для этого мы вписываем сумму чисел, которые находятся на пересечении этой ячейки. Например, заполним первую строку.

В ячейке на пересечении двух единиц у нас получится 1+1 = 2, далее пересекаются 2 и 1 получаем 2 +1 = 3, далее 3 + 1 = 4, далее 4 + 1 = 5, далее 5 + 1 = 6 и в последней ячейке этой строки получим 6 + 1 = 7Таким образом, заполняем всю таблицу и получаем:Мы получили таблицу со всеми возможными вариантами выпадения значений двух кубиков и их сумму.

Теперь вернемся к нашей задаче. Нам требовалось найти вероятность того, что на кубиках выпадет сумма не менее 9 очков. Следовательно, отмечаем в таблице значения больше или равные 9:Таким образом, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 10

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Итак, вероятность того, что на кубиках выпадет сумма не менее 9 очков, равна 0,27.

Ответ: 0,27

Задача 7

Маша подбрасывает два игральных кубика. Какова вероятность того, что в сумме на кубиках выпадет 6 очков? Результат округлите до сотых.

Решение. Берем нашу таблицу и находим значения, когда на кубиках сумма составит 6 очков:Итак, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 5.

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Напомним, чтобы 5/36 перевести в десятичную дробь, необходимо разделить столбиком 5,00000 на 36, в результате чего получим 0,13888. Округляем до сотых и получаем 0,14.

Итак, вероятность того, что на кубиках выпадет сумма 6 очков, равна 0,14.

Ответ: 0,14

Независимые события в теории вероятностей

Если вероятность появления одного события не зависит от появления другого события, и наоборот, то такие события называются независимыми.

Если события независимые, то их вероятности перемножаются. В результате этого мы получаем вероятность возникновения этих событий одновременно.

Давайте рассмотрим задачи с независимыми событиями.

Задача 8

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок попадет в мишень все 6 раз подряд?  Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность каждого из них – 0,8. Чтобы найти вероятность возникновения этих независимых событий одновременно необходимо перемножить вероятности этих событий. Таким образом:

Р = 0,8 * 0,8 *0,8 * 0,8 *0,8 * 0,8 = 0,262144

Округляем результат до сотых и получаем 0,26.

Итак, вероятность того, что стрелок попадет в мишень все 6 раз подряд, равна 0,26.

Ответ: 0,26

Рассмотрим еще одну задачу, чуть сложнее.

Задача 9

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок первые 2 раза промахнется, а остальные 4 раза попадет в цель? Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность того, что стрелок попадет или не попадет в мишень, равна 1. Вероятность того, что стрелок попадет в мишень, равна 0,8.

Тогда вероятность того, что не попадет в мишень, равна 1 — 0,8 = 0,2. Нам нужно найти вероятность, когда стрелок два раза промахнется, а потом четыре раза попадет.

Перемножаем соответствующие вероятности:

Р = 0,2 * 0,2 * 0,8 * 0,8 * 0,8 * 0,8 = 0,016384

Округляем 0,016384 до сотых и получаем 0,02.

Итак, вероятность того, что стрелок два раза промахнется, а потом четыре раза попадет, равна 0,02.

Ответ: 0,26

Задача 10

Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?

Мы понимаем, что здесь может быть большое количество вариантов сочетаний книг. Чтобы вычислить их количество нужно знать формулу числа сочетаний из n по m: где С – это число сочетаний

n – количество элементов, из которого нужно выбрать

m – количество элементов, которое нужно выбрать

В формуле присутствует факториал. Записывается факториал следующим образом: n!, 5!, 7! Напомним, что это такое.

Факториал – это произведение всех натуральных чисел от 1 до основания факториала. Основание факториала – это число, которое стоит перед знаком «!». Т.е. факториал 5! имеет основание 5 и найти его можно следующим образом:

5! = 1 * 2 * 3 * 4 * 5

А факториал n! имеет основание n:

n! = 1 * 2 * 3 * 4 * 5 * … * n

Часто ученики путают, что в ставить внизу, а что наверху, т.е. меняют n и m местами. Применительно к нашей задаче можно перепутать, что ставить наверху: 2 или 8. Запомнить, что ставить наверху, а что внизу – легко. Сверху всегда стоит наименьшее число, т.е. в нашем случае – это 2.

Давайте вернемся к нашей задаче. Применяем формулу и получаем: Обратите внимание, что не нужно умножать в числителе все натуральные числа от 1 до 8, у вас это отнимет очень много времени. Достаточно подробно расписать числитель и знаменатель, сделать сокращение и все легко считается.

Итак, Маша может выбрать книги 28 способами.

Ответ: 28

Давайте разберем еще одну задачу.

Задача 11

Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?

Решение. Применяем нашу формулу:

Ответ: 105 способов

Итак, сегодня мы разбирались, как решать задачи на вероятность. Теперь вы можете приступить к практике, ведь только большое количество тренировок позволит вам успешно справиться с заданиями ЕГЭ. Еще больше информации для подготовки к ЕГЭ по математике вы можете получить на нашем сайте, а также в нашей группе.

Задания №4. Теория вероятности. Часть 1

Теория вероятности формулы и примеры решения задач. Основные формулы теории вероятности

Елена Репина 2013-08-20 2019-08-12

При изучении темы вам может пригодится это видео

Часть 1

(Смотрите часть 2 здесь)

При решении задач мы будем опираться на классическое определение вероятности события.

Задача 1. На экзамене 40 вопросов, Коля не выучил 4 из них. Найдите вероятность того, что ему попадется выученный вопрос. 

Решение: + показать

Вероятность события определятся формулой:  где  –  число  благоприятных событий (исходов), –число всех возможных событий.

Из 40 вопросов (число всевозможных исходов) Коля выучил вопросов (число благоприятных исходов).

Тогда вероятность того, что Коле попадется выученный вопрос – это .

Ответ: 0,9.

Задача 2. В фирме такси в данный момент свободно 35 машин: 11 красных, 17 фиолетовых и 7 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.

Решение: + показать

Вероятность того, что к заказчице приедет зеленое такси равна

Ответ: 0,2. 

Задача 3. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.

Решение: + показать

В сумме выпадет 7 очков в следующих вариантах:

5+1+1 (3 комбинации)

1+2+4 (6 комбинаций)

1+3+3 (3 комбинации)

2+2+3 (3 комбинации)

Всего вариантов.

Каждый из трех кубиков может выпасть шестью гранями, поэтому общее число исходов равно .

Следовательно, вероятность того, что в сумме выпадет 7 очков, равна

Ответ: 0,07. 

Задача 4. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу.

Решение: + показать

Благоприятный исход: орел-орел-орел-орел.

Всего исходов –

Значит, вероятность того, что решка не выпадет ни разу – есть

Ответ: 0,0625. 

Задача 5. Научная конференция проводится в 3 дня. Всего запланировано 75 докладов — в первый день 27 докладов, остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: + показать

Всего запланировано 75 докладов, и так как в первый день запланировано 27, то на оставшиеся два дня остается 75-27=48 докладов, при этом во второй и третий дни будет прочитано по 48:2=24 доклада.

Значит вероятность, что доклад профессора М. окажется запланированным на третий день есть

Ответ: 0,32. 

Задача 6. Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 участника из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России?

Решение: + показать

В первом туре Василий Лукин может сыграть с 26 − 1 = 25 шашистом, из которых 3 − 1 = 2 из России.

Значит, вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России, есть

Ответ: 0,08. 

Задача 7. В чемпионате мира учавствуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в первой группе?

Решение: + показать

Количество карточек с номером «1» – 4 штуки. Всего карточек  (команд) – 20.

Значит, вероятность того, что команда Китая окажется в первой группе равна

Ответ: 0,2. 

Задача 8. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4?

Решение: + показать

На клавиатуре телефона  цифр меньше  4-х – 4 штуки (0; 1; 2; 3). Всего цифр 10.

Значит,  вероятность того, что случайно нажатая цифра будет меньше 4 равна

 Ответ: 0,4. 

Задача 9. Какова вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2?

Решение: + показать

От 41 до 56 ровно 16 чисел. Среди них четных 8 штук (42; 44; 46; 48; 50; 52; 54; 56).

Значит, вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2 равна

Ответ: 0,5. 
Задача 10. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?

Решение: + показать

Сумма очков равна 10 в следующих трех случаях:

4+6; 6+4; 5+5.

Ответ: 3. 

Задача 11. В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе.

Решение: + показать

Пусть один из друзей  находится в некоторой группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся. Вероятность того, что друг  окажется среди этих 6 человек, равна 6 : 20 = 0,3.

Ответ: 0,3. 

Задача 12. Вероятность того, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096. В некотором городе из 1000 проданных блендеров в течение года в гарантийную мастерскую поступило 102 штуки. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: + показать

Частота события «гарантийный ремонт» составляет

Вероятность же, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096.

Разница между частотой события и вероятностью составляет

Ответ: 0,006. 

Задача 13. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки 9 часов.

Решение: + показать

На циферблате между 6 часами и 9  располагаются три часовых деления.

Всего на циферблате 12 часовых делений. Поэтому искомая вероятность равна:

Ответ: 0,25. 

Задача 14. За круг­лый стол на 5 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 3 маль­чи­ка и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

Решение: + показать

«Фиксируем» одну из девочек на одном из стульев. Благоприятной ситуацией для нас будет посадка второй девочки на один из двух стульев, стоящих рядом со стулом, занятым первой девочкой. Всего свободных стульев для второй девочки – .

Итак, ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом есть , то есть

Ответ:  

Часть 2

Вы можете пройти тест по Задачам №4.

egeMax |

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

Теория вероятности формулы и примеры решения задач

Теория вероятности формулы и примеры решения задач. Основные формулы теории вероятности

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.

е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику.

Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место.

Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов  В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя.

Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: .

В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события.

Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.