Решение по формуле ньютона лейбница. Калькулятор онлайн.Вычислить определенный интеграл (площадь криволинейной трапеции)
Определенный интеграл. Теорема Ньютона – Лейбница
Справочник по математике | Элементы математического анализа | Интегралы |
Рассмотрим на плоскости прямоугольную систему координат Oty , ось абсцисс которой в данном разделе будем обозначать Ot , а не Ox (рис. 1).
Рис.1
Пусть y = f (t) – непрерывная на отрезке [a, b] функция, принимающая только положительные значения.
Определение 1. Фигуру, ограниченную графиком функции y = f (t) сверху, отрезком [a, b] снизу, а справа и слева отрезками прямых t = a и t = b (рис. 2), называют криволинейной трапецией.
Рис.2
Определение 2. Число, равное площади криволинейной трапеции, изображенной на рисунке 2, называют определенным интегралом от функции f (t) в пределах от a до b и обозначают(1) |
Формула (1) читается так: «Интеграл от a до b от функции f (t) по dt»
Определение 3. В формуле (1) функцию f (t) называют подынтегральной функцией, переменную t называют переменной интегрирования, отрезок [a, b] называют отрезком интегрирования, число b называют верхним пределом интегрирования, а число a – нижним пределом интегрирования.
Производная от определенного интеграла по верхнему пределу
Если обозначить S (x) площадь криволинейной трапеции, ограниченной с боков отрезками прямых t = a и t = x (рис. 3),
Рис.3
то будет справедлива формула
(2) |
Теорема 1. Производная от определенного интеграла по верхнему пределу интегрирования равна значению подынтегральной функции в верхнем пределе интегрирования.
Другими словами, справедлива формула
Доказательство. Из формулы (2) следует, что
(3) |
где через Δx обозначено приращение аргумента x (рис. 4)
Рис.4
Из формул (3) и (2) получаем, что
(4) |
где через ΔS обозначено приращение функции S (x), соответствующее приращению аргумента Δx (рис. 5)
Рис.5
Если ввести обозначения
(см. раздел «Наибольшее и наименьшее значение функции на отрезке»), то можно заметить, что выполнено неравенство
(5) |
смысл которого заключается в том, что площадь криволинейной трапеции, изображенной на рисунке 5, не может быть меньше, чем площадь прямоугольника с основанием Δx и высотой m, и не может быть больше, чем площадь прямоугольника с основанием Δx и высотой M.
Из неравенства (5) следует, что
откуда, переходя к пределу при Δx → 0, получаем
В силу непрерывности функции y = f (t) выполнено равенство
По определению производной функции S (x) имеем
(6) |
что и завершает доказательство теоремы 1.
Следствие 1. Функция S (x) является первообразной подынтегральной функции f (x) .
Теорема Ньютона – Лейбница
Теорема Ньютона-Лейбница. Если F (x) – любая первообразная функции f (x), то справедливо равенство
(7) |
Доказательство. Поскольку S (x) и F (x) – две первообразных функции f (x), то существует такое число c, что выполнено равенство
Воспользовавшись равенством (8), из формулы (2) получаем, что
(9) |
Подставив в формулу (9) значение x = a, получаем равенство
(10) |
Заметим, что
(11) |
поскольку площадь криволинейной трапеции, «схлопнувшейся» в отрезок, лежащий на прямой t = a, равна 0 .
Из формул (10) и (11) следует, что
c = – F (a) ,
и формула (9) принимает вид
,
что и завершает доказательство теоремы Ньютона-Лейбница.
Замечание 1. Формулу (7) часто записывают в виде
(12) |
и называют формулой Ньютона-Лейбница.
Замечание 2. Для правой части формулы Ньютона-Лейбница часто используют обозначение
Замечание 3. Формулу Ньютона-Лейбница (12) можно записывать, как с переменной интегрирования t , так и с любой другой переменной интегрирования, например, x :
Замечание 4.Все определения и теоремы остаются справедливыми не только в случае положительных непрерывных функций f (x), но и для гораздо более широкого класса функций, имеющих произвольные знаки и интегрируемых по Риману, однако этот материал уже выходит за рамки школьного курса математики.
Примеры решения задач
Задача 1. Найти площадь фигуры, ограниченной линиями
y = e – x, y = 0, x = 0, x = ln 3.
Решение. Рассматриваемая фигура является криволинейной трапеции (рис. 6)
Рис.6
Найдем площадь этой криволинейной трапеции:
Ответ.
Задача 2. График функции y = f (x) изображен на рисунке 7.
Рис.7
Вычислить интеграл
(13) |
Решение. Интеграл (13) равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x), ограниченной снизу осью абсцисс Ox и ограниченной с боков отрезками прямых x = 2 и x = 9.
Криволинейная трапеция состоит из квадрата, раскрашенного на рисунке 7 розовым цветом, и трапеции, раскрашенной на рисунке 7 зеленым цветом. Площадь квадрата равна 9, а площадь трапеции равна 20.
Таким образом, интеграл (13) равен 29.
Ответ. 29.
Задача 3. Вычислить определенный интеграл
(14) |
Решение. Поскольку одной из первообразных подынтегральной функции интеграла (14) является функция
то в соответствии с формулой Ньютона-Лейбница получаем
Ответ.
На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.
Вычисление определенного интеграла. Формула Ньютона-Лейбница
Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.
Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.
Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.
Формула Ньютона-Лейбница
Определение 1
Когда функция y=y(x) является непрерывной из отрезка [a; b] ,а F(x) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫abf(x)dx=F(b)-F(a).
Данную формулу считают основной формулой интегрального исчисления.
Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.
Когда функция y=f(x) непрерывна из отрезка [a; b], тогда значение аргумента x∈a; b, а интеграл имеет вид ∫axf(t)dt и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫axf(t)dt=Φ(x), она является непрерывной, причем для нее справедливо неравенство вида ∫axf(t)dt'=Φ'(x)=f(x).
Зафиксируем, что приращении функции Φ(x) соответствует приращению аргумента ∆x, необходимо воспользоваться пятым основным свойством определенного интеграла и получим
Φ(x+∆x)-Φx=∫ax+∆xf(t)dt-∫axf(t)dt==∫ax+∆xf(t)dt=f(c)·x+∆x-x=f(c)·∆x
где значение c∈x; x+∆x.
Зафиксируем равенство в виде Φ(x+∆x)-Φ(x)∆x=f(c). По определению производной функции необходимо переходить к пределу при ∆x→0, тогда получаем формулу вида Φ'(x)=f(x). Получаем, что Φ(x) является одной из первообразных для функции вида y=f(x), расположенной на [a; b]. Иначе выражение можно записать
F(x)=Φ(x)+C=∫axf(t)dt+C, где значение C является постоянной.
Произведем вычисление F(a) с использованием первого свойства определенного интеграла. Тогда получаем, что
F(a)=Φ(a)+C=∫aaf(t)dt+C=0+C=C, отсюда получаем, что C=F(a). Результат применим при вычислении F(b) и получим:
F(b)=Φ(b)+C=∫abf(t)dt+C=∫abf(t)dt+F(a), иначе говоря, F(b)=∫abf(t)dt+F(a). Равенство доказывает формулу Ньютона-Лейбница ∫abf(x)dx+F(b)-F(a).Приращение функции принимаем как Fxab=F(b)-F(a). С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫abf(x)dx=Fxab=F(b)-F(a).
Чтобы применить формулу, обязательно необходимо знать одну из первообразных y=F(x) подынтегральной функции y=f(x) из отрезка [a; b] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.
Пример 1
Произвести вычисление определенного интеграла ∫13x2dx по формуле Ньютона-Лейбница.
Решение
Рассмотрим, что подынтегральная функция вида y=x2 является непрерывной из отрезка [1;3], тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y=x2 имеет множество первообразных для всех действительных значений x, значит, x∈1; 3 запишется как F(x)=∫x2dx=x33+C. Необходимо взять первообразную с С=0, тогда получаем, что F(x)=x33.
Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫13x2dx=x3313=333-133=263.
Ответ: ∫13x2dx=263
Пример 2
Произвести вычисление определенного интеграла ∫-12x·ex2+1dx по формуле Ньютона-Лейбница.
Решение
Заданная функция непрерывна из отрезка [-1;2], значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫x·ex2+1dx при помощи метода подведения под знак дифференциала , тогда получаем ∫x·ex2+1dx=12∫ex2+1d(x2+1)=12ex2+1+C.
Отсюда имеем множество первообразных функции y=x·ex2+1, которые действительны для всех x, x∈-1; 2.
Необходимо взять первообразную при С=0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида
∫-12x·ex2+1dx=12ex2+1-12==12e22+1-12e(-1)2+1=12e(-1)2+1=12e2(e3-1)
Ответ: ∫-12x·ex2+1dx=12e2(e3-1)
Пример 3
Произвести вычисление интегралов ∫-4-124×3+2x2dx и ∫-114×3+2x2dx.
Решение
Отрезок -4; -12 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y=4×3+2×2. Получаем, что∫4×3+2x2dx=4∫xdx+2∫x-2dx=2×2-2x+C
Необходимо взять первообразную F(x)=2×2-2x, тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:
∫-4-124×3+2x2dx=2×2-2x-4-12=2-122-2-12-2-42-2-4=12+4-32-12=-28
Производим переход к вычислению второго интеграла.
Из отрезка [-1;1] имеем, что подынтегральная функция считается неограниченной, потому как limx→04×3+2×2=+∞, тогда отсюда следует, что необходимым условием интегрируемости из отрезка.
Тогда F(x)=2×2-2x не является первообразной для y=4×3+2×2из отрезка [-1;1], так как точка O принадлежит отрезку, но не входит в область определения.
Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y=4×3+2×2 из отрезка [-1;1].
Ответ: ∫-4-124×3+2x2dx=-28, имеется определенный интеграл Римана и Ньютона-Лейбница для функции y=4×3+2×2 из отрезка [-1;1].
Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.
Замена переменной в определенном интеграле
Когда функция y=f(x) является определенной и непрерывной из отрезка [a;b], тогда имеющееся множество [a;b] считается областью значений функции x=g(z), определенной на отрезке α; β с имеющейся непрерывной производной, где g(α)=a и gβ=b, отсюда получаем, что ∫abf(x)dx=∫αβf(g(z))·g'(z)dz.
Данную формулу применяют тогда, когда нужно вычислять интеграл ∫abf(x)dx, где неопределенный интеграл имеет вид ∫f(x)dx, вычисляем при помощи метода подстановки.
Пример 4
Произвести вычисление определенного интеграла вида ∫9181x2x-9dx.
Решение
Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2x-9=z⇒x=g(z)=z2+92. Значение х=9, значит, что z=2·9-9=9=3, а при х=18 получаем, что z=2·18-9=27=33, тогда gα=g(3)=9, gβ=g33=18. При подстановке полученных значений в формулу ∫abf(x)dx=∫αβf(g(z))·g'(z)dz получаем, что
∫9181x2x-9dx=∫3331z2+92·z·z2+92'dz==∫3331z2+92·z·zdz=∫3332z2+9dz
По таблице неопределенных интегралов имеем, что одна из первообразных функции 2z2+9 принимает значение 23arctgz3. Тогда при применении формулы Ньютона-Лейбница получаем, что∫3332z2+9dz=23arctgz3333=23arctg333-23arctg33=23arctg3-arctg 1=23π3-π4=π18
Нахождение можно было производить, не используя формулу ∫abf(x)dx=∫αβf(g(z))·g'(z)dz.
Если при методе замены использовать интеграл вида ∫1x2x-9dx, то можно прийти к результату ∫1x2x-9dx=23arctg2x-93+C.
Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что
∫9182z2+9dz=23arctgz3918==23arctg2·18-93-arctg2·9-93==23arctg3-arctg 1=23π3-π4=π18
Результаты совпали.
Ответ: ∫9182x2x-9dx=π18
Интегрирование по частям при вычислении определенного интеграла
Если на отрезке [a;b] определены и непрерывны функции u(x) и v(x), тогда их производные первого порядка v'(x)·u(x) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u'(x)·v(x) равенство ∫abv'(x)·u(x)dx=(u(x)·v(x))ab-∫abu'(x)·v(x)dx справедливо.
Формулу можно использовать тогда, необходимо вычислять интеграл ∫abf(x)dx, причем ∫f(x)dx необходимо было искать его при помощи интегрирования по частям.
Пример 5
Произвести вычисление определенного интеграла ∫-π23π2x·sinx3+π6dx.
Решение
Функция x·sinx3+π6 интегрируема на отрезке -π2; 3π2, значит она непрерывна.
Пусть u(x)=х, тогда d(v(x))=v'(x)dx=sinx3+π6dx, причем d(u(x))=u'(x)dx=dx, а v(x)=-3cosπ3+π6. Из формулы ∫abv'(x)·u(x)dx=(u(x)·v(x))ab-∫abu'(x)·v(x)dx получим, что
∫-π23π2x·sinx3+π6dx=-3x·cosx3+π6-π23π2-∫-π23π2-3cosx3+π6dx==-3·3π2·cosπ2+π6–3·-π2·cos-π6+π6+9sinx3+π6-π23π2=9π4-3π2+9sinπ2+π6-sin-π6+π6=9π4-3π2+932=3π4+932
Решение примера можно выполнить другим образом.
Найти множество первообразных функции x·sinx3+π6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:
∫x·sinxx3+π6dx=u=x, dv=sinx3+π6dx⇒du=dx, v=-3cosx3+π6==-3cosx3+π6+3∫cosx3+π6dx==-3xcosx3+π6+9sinx3+π6+C⇒∫-π23π2x·sinx3+π6dx=-3cosx3+π6+9sincosx3+π6—3·-π2·cos-π6+π6+9sin-π6+π6==9π4+932-3π2-0=3π4+932
Ответ: ∫x·sinxx3+π6dx=3π4+932
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Численное интегрирование
Численные методы вычисления значения определенного интеграла применяются в том случае, когда первообразная подинтегральной функции не выражается через аналитические функции, и поэтому невозможно вычислить значение по формуле Ньютона-Лейбница. Для получения значения определенного интеграла таких функций можно воспользоваться численным интегрированием.
Численное интегрирование сводится к вычислению площади криволинейной трапеции, ограниченной графиком заданной функции, осью х и вертикальными прямыми ограничивающими отрезок слева и справа. Подинтегральная функция заменяется на более простую, обеспечивающую заданную точность, вычисление интеграла для которой не составляет труда.
Калькулятор ниже вычисляет значение одномерного определенного интеграла численно на заданном отрезке, используя формулы Ньютона-Котеса, частными случаями которых являются:
- Метод прямоугольников
- Метод трапеций
- Метод парабол (Симпсона)
Квадратурная функцияОбновление…Точность вычисления
Знаков после запятой: 6
Значение определенного интеграла
Геометрический вид интеграла
Численное интегрирование с использованием функций Ньютона Котеса
При использовании функций Ньютона-Котеса отрезок интегрирования разбивается на несколько равных отрезков точками x1,x2,x3..xn.
Подинтегральную функцию заменяют интерполяционным многочленом Лагранжа различной степени, интегрируя который, получают формулу численного интегрирования различного порядка точности.
В итоге, приближенное значение определенного интеграла вычисляется, как сумма значений подинтегральной функции в узлах, помноженных на некоторые константы Wi (веса):
- Rn – остаток или погрешность.
- n – общее количество точек.
- Сумма в формуле – квадратурное правило (метод).
В справочнике Квадратурные функции Ньютона-Котеса, мы собрали наиболее часто встречающиеся квадратурные правила, для интегрирования по равным отрезкам. Зарегистрированные пользователи могут добавлять в этот справочник новые правила.
Границы отрезка интегрирования
В зависимости от того, входят ли граничные точки отрезка в расчет, выделяют замкнутые и открытые квадратурные правила.
Открытые правила, (правила, в которых граничные точки не включаются в расчет) удобно использовать в том случае, если подинтегральная функция не определена в некоторых точках.
Например, используя метод прямоугольников мы сможем вычислим приблизительное значение интеграла функции ln(x) на отрезке (0,1), несмотря на то, что ln(0) не существует.
Можно придумать правила, которые открыты только с одной стороны. Простейшим случаем таких правил являются правила левых и правых прямоугольников.
Погрешность вычисления
В целом с увеличением количества узлов в правиле (при повышении степени интерполирующего полинома) возрастает точность вычисления интеграла. Однако для некоторых функций это может и не быть справедливо.
Впервые анализ этой особенности опубликовал Карл Рунге, немецкий математик, занимавшийся исследованием численных методов.
Он заметил, интерполирующий полином с равномерным разбиением отрезка для функции перестает сходиться в диапазоне значений 0.726.
. ≤ |x| 10 применять не рекомендуется.
Для увеличения точности численного интегрирования, можно разбить отрезок на несколько частей — частичных интервалов, и для каждой части отдельно вычислить приближенное значение интеграла. Сумма значений интеграла по всем частичным интервалам даст нам значение интеграла на всем отрезке. Кроме того можно комбинировать различные правила друг с другом в любой последовательности.
Для исследования работы с заданной функцией новых, основанных на формулах Ньютона-Котеса правил, можно воспользоваться базовым калькулятором, в котором веса задаются в явном виде:
Границы интервалаЗамкнутыОткрытыОткрыты справаОткрыты слеваТочность вычисления
Знаков после запятой: 6
Значение определенного интеграла
Геометрический вид интеграла
Веса задаются через запятую, допускаются как целые, так и действительные числа с точкой, для отделения дробной части. Можно задать вес в виде простой дроби, например, вот так: 1/90.
Первый коэффициент в списке весов – это общий множитель, его тоже можно задать в виде простой дроби или задать = 1, если общего множителя нет.
Например, веса: 3/8,1,3,3,1 определяют Метод Симпсона 3/8
Правила Ньютона-Котеса несовершенны, для реальных приложений следует использовать более эффективные методы, например метод Гаусса-Кронрода, о котором мы напишем в следующих статьях.
Литература: