Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Прямая и обратная пропорциональности

Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Понятие о прямой пропорциональности

Представьте, что вы задумали купить своих любимых конфет (или чего угодно, что вам очень нравится). У конфет в магазине своя цена. Предположим, 300 рублей за килограмм. Чем больше конфет вы купите, тем больше денег заплатите. То есть если захотите 2 килограмма – заплатите 600 р., а захотите 3 кило – отдадите 900 рублей. С этим вроде бы все ясно, верно?

Если да, то тогда вам сейчас ясно и что такоепрямая пропорциональность– это понятие, которое описывает отношение двух зависящих друг от друга величин. И отношение этих величин остается неизменным и постоянным: на сколько частей увеличивается или уменьшается одна из них, на столько же частей пропорционально увеличивается или уменьшается вторая.

Описать прямую пропорциональность можно такой вот формулой:f(x) = a*x, и a в этой формуле – постоянная величина (a = const). В нашем примере про конфеты цена – это постоянная величина, константа.

Она не возрастает и не уменьшается, сколько бы конфет вы не задумали купить. Независимая переменная (аргумент)x– это то, сколько килограммов конфет купить вы собираетесь. А зависимая переменнаяf(x) (функция) – то, сколько денег вы в итоге заплатите за свою покупку.

Так что можем подставить в формулу цифры и получить: 600 р. = 300 р. * 2 кг.

Промежуточный вывод такой: если возрастает аргумент, возрастает и функция, если аргумент убывает, функция тоже убывает

Функция и ее свойства

Функцией прямой пропорциональности является частный случай линейной функции. Если линейная функция это y = k*x + b, то для прямой пропорциональности это выглядит так: y = k*x, гдеk называется коэффициентом пропорциональности, и это всегда не равно нулю число. Вычислитьk легко – он находится как частное функции и аргумента: k = у/х.

Чтобы было нагляднее, возьмем еще один пример. Представьте, что из пункта А в пункт Б движется автомобиль. Его скорость – 60 км/ч. Если предположить, что скорость движения остается постоянной, то ее можно принять за константу.

И тогда запишем условия в виде: S = 60*t, и эта формула аналогична функции прямой пропорциональности y = k*x.

Проведем параллель дальше: если k = у/х, то и скорость автомобиля можно вычислить, зная расстояние между А и Б и затраченное на дорогу время: V = S/t.

А теперь от прикладного применения знаний о прямой пропорциональности вернемся обратно к ее функции. К свойствам которой относится:

    областью ее определения является множество всех действительных чисел (а также его подмножества);функция нечетная;изменение переменных прямо пропорционально осуществляется по всей длине числовой прямой.

Прямая пропорциональность и ее график

График функции прямой пропорциональности – это прямая, которая пересекает точку начала координат. Чтобы его построить, достаточно отметить только еще одну точку. И соединить ее и начало координат прямой.

В случае с графикомk– это угловой коэффициент. Если угловой коэффициент меньше нуля (k < 0), то угол между графиком функции прямой пропорциональности и осью абсцисс тупой, а функция убывающая. Если угловой коэффициент больше нуля (k > 0), график и ось абсцисс образуют острый угол, а функция – возрастающая.

И еще одно свойство графика функции прямой пропорциональности напрямую связано с угловым коэффициентомk. Предположим, у нас две не идентичных функции и, соответственно, два графика. Так вот, если коэффициентыkэтих функций равны, их графики расположены на оси координат параллельно. А если коэффициентыkне равны друг другу, графики пересекаются.

Примеры задач

А теперь решим пару задач на прямую пропорциональность

Начнем с простого.

Задача 1: Представьте, что 5 куриц за 5 дней снесли 5 яиц. А если будет 20 куриц, сколько яиц они снесут за 20 дней?

Решение: Обозначим неизвестное какх. И рассуждать будем следующим образом: во сколько раз больше куриц стало? Разделим 20 на 5 и узнаем, что в 4 раза. А во сколько раз больше яиц снесут 20 куриц за те же 5 дней? Тоже в 4 раза больше. Значит, находим нашх так: 5*4*4 = 80 яиц снесут 20 куриц за 20 дней.

Теперь пример чуть сложнее, перефразируем задачу из «Всеобщей арифметики» Ньютона. Задача 2: Писатель за 8 дней может сочинить 14 страниц новой книги. Если бы у него были помощники, сколько бы человек понадобилось, чтобы написать 420 страниц за 12 дней?

Решение: Рассуждаем, что количество человек (писатель + помощники) увеличивается с увеличением объема работы, если бы ее пришлось сделать за то же количество времени. Но во сколько раз? Разделив 420 на 14, узнаем, что увеличивается в 30 раз.

Но так как по условию задачи на работу дается больше времени, то количество помощников увеличивается не в 30 раз, а таким образом: х = 1 (писатель) * 30 (раз) : 12/8 (дней). Преобразуем и выясним, что х = 20 человек напишут 420 страниц за 12 дней.

Решим еще задачу, похожую на те, что были у нас в примерах.

Задача 3: В одно и то же путешествие отправилось два автомобиля. Один двигался со скоростью 70 км/ч и за 2 часа проделал тот же путь, что другой за 7 часов. Найдите скорость второго автомобиля.

Решение:Как вы помните, путь определяется через скорость и время – S = V *t. Поскольку путь оба автомобиля проделали одинаковый, мы можем приравнять два выражения: 70*2 = V*7. Откуда найдем, что скорость второго автомобиля, это V = 70*2/7 = 20 км/ч.

И еще пару примеров заданий с функциями прямой пропорциональности. Иногда в задачах требуется найти коэффициент k.

Задача 4: Даны функции у = – х/16 и у = 5х/2, определите их коэффициенты пропорциональности.

Решение: Как вы помните, k = у/х. Значит, для первой функции коэффициент равен -1/16, а для второй k = 5/2.

А еще вам может встретиться задание, как Задача 5: Запишите формулой прямую пропорциональность. Ее график и график функции у = -5х + 3 расположены параллельно.

Решение:Функция, которая дана нам в условии, – линейная. Нам известно, что прямая пропорциональность – частный случай линейной функции.

А также мы знаем, что если коэффициенты k функций равны, их графики параллельны.

Значит, все, что требуется – это вычислить коэффициент известной функции и задать прямую пропорциональность по знакомой нам формуле: y = k*x. Коэффициент k = -5, прямая пропорциональность: у = -5*х.

Вывод

Теперь вы узнали (или вспомнили, если уже проходили эту тему раньше), что называется прямой пропорциональностью, и рассмотрели ее примеры. Мы также поговорили о функции прямой пропорциональности и ее графике, решили несколько задач для примера.

Прямая и обратная пропорциональные зависимости. Практическое применение прямой и обратной пропорциональной зависимости

Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Наряду с прямо пропорциональными величинами в арифметике рассматривались также и величины обратно пропорциональные.

Приведём примеры.

1) Длины основания и высоты прямоугольника при постоянной площади.

Пусть требуется выделить для огорода прямоугольный участок площадью в

Мы «можем произвольно установить, например, длину участка. Но тогда ширина участка будет зависеть от того, какую длину мы выбрали. Различные (возможные) значения длины и ширины приведены в таблице.

Вообще, если обозначить длину участка через х, а ширину – через у, то зависимость между ними можно выразить формулой:

Выразив у через х, получим:

Давая х произвольные значения, будем получать соответствующие значения у.

2) Время и скорость равномерного движения при определённом расстоянии.

Пусть расстояние между двумя городами равно 200 км. Чем больше будет скорость движения, тем меньше времени потребуется, чтобы проехать данное расстояние. Это видно из следующей таблицы:

Вообще, если обозначить скорость через х, а время движения – через у, то зависимость между ними выразится формулой:

Определение. Зависимость между двумя величинами выраженная равенством , где k – определённое число (не равное нулю), называется обратно пропорциональной зависимостью.

Число и здесь называется коэффициентом пропорциональности.

Так же, как и в случае прямой пропорциональности, в равенстве величины х и у в общем случае могут принимать положительные и отрицательные значения.

Но во всех случаях обратной пропорциональности ни одна из величин не может быть равной нулю. В самом деле, если хоть одна из величин х или у будет равна нулю, то в равенстве левая часть будет равна ну

А правая – некоторому числу, не равному нулю (по определению), то есть получится неверное равенство.

2. График обратно пропорциональной зависимости

Построим график зависимости

Выразив у через х, получим:

Будем давать х произвольные (допустимые) значения и вычислим соответствующие значения у. Получим таблицу:

Построим соответствующие точки (черт. 28).

Если будем брать значения х через меньшие промежутки, то и точки расположатся теснее.

При всевозможных значениях х соответствующие точки расположатся на двух ветвях графика, симметричных относительно начала координат и проходящих в I и III четвертях координатной плоскости (черт. 29).

Итак, мы видим, что графиком обратной пропорциональности является кривая линия. Эта линия состоит из двух ветвей.

Одна ветвь получится при положительных, другая – при отрицательных значениях х.

График обратно пропорциональной зависимости называется гиперболой.

Чтобы получить более точный график, надо строить возможно больше точек.

С достаточно большой точностью гиперболу можно начертить, пользуясь, например, лекалами.

На чертеже 30 построен график обратно пропорциональной зависимости с отрицательным коэффициентом. Составив, например, такую таблицу:

получим гиперболу, ветви которой расположены во II и IV четвертях.

Пример

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой .

Прямая пропорциональность

Прямая пропорциональность – функциональная зависимость , при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально, в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

f(x) = ax,a = const

Обратная пропорциональность

Обра́тная пропорциона́льность – это функциональная зависимость , при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

Математически обратная пропорциональность записывается в виде формулы:

Свойства функции:

Источники

Wikimedia Foundation. 2010.

  • Второй закон Ньютона
  • Кулоновский барьер

Смотреть что такое “Прямая пропорциональность” в других словарях:

    прямая пропорциональность – — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN direct ratio … Справочник технического переводчикапрямая пропорциональность – tiesioginis proporcingumas statusas T sritis fizika atitikmenys: angl. direct proportionality vok. direkte Proportionalität, f rus. прямая пропорциональность, f pranc. proportionnalité directe, f … Fizikos terminų žodynasПРОПОРЦИОНАЛЬНОСТЬ – (от лат. proportionalis соразмерный, пропорциональный). Соразмерность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПРОПОРЦИОНАЛЬНОСТЬ отлат. proportionalis, пропорциональный. Соразмерность. Объяснение 25000… … Словарь иностранных слов русского языкаПРОПОРЦИОНАЛЬНОСТЬ – ПРОПОРЦИОНАЛЬНОСТЬ, пропорциональности, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к пропорциональный. Пропорциональность частей. Пропорциональность телосложения. 2. Такая зависимость между величинами, когда они пропорционально (см. пропорциональный … Толковый словарь УшаковаПропорциональность – Пропорциональными называются две взаимно зависимые величины, если отношение их значений остается неизменным.. 1 Пример 2 Коэффициент пропорциональности … ВикипедияПРОПОРЦИОНАЛЬНОСТЬ – ПРОПОРЦИОНАЛЬНОСТЬ, и, жен. 1. см. пропорциональный. 2. В математике: такая зависимость между величинами, при к рой увеличение одной из них влечёт за собой изменение другой во столько же раз. Прямая п. (при к рой с увеличением одной величины… … Толковый словарь Ожеговапропорциональность – и; ж. 1. к Пропорциональный (1 зн.); соразмерность. П. частей. П. телосложения. П. представительства в парламенте. 2. Матем. Зависимость между пропорционально изменяющимися величинами. Коэффициент пропорциональности. Прямая п. (при которой с… … Энциклопедический словарь

I. Прямо пропорциональные величины.

Пусть величина y зависит от величины х. Если при увеличении х в несколько раз величина у увеличивается во столько же раз, то такие величины х и у называются прямо пропорциональными.

Примеры.

1. Количество купленного товара и стоимость покупки (при фиксированной цене одной единицы товара — 1 штуки или 1 кг и т. д.) Во сколько раз больше товара купили, во столько раз больше и заплатили.

2. Пройденный путь и затраченное на него время (при постоянной скорости). Во сколько раз длиннее путь, во столько раз больше потратим времени на то, чтобы его пройти.

3. Объем какого-либо тела и его масса. (Если один арбуз в 2 раза больше другого, то и масса его будет в 2 раза больше)

II. Свойство прямой пропорциональности величин.

Если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

Задача 1. Для малинового варенья взяли 12 кг малины и 8 кг сахара. Сколько сахара потребуется, если взяли 9 кг малины?

Решение.

Рассуждаем так: пусть потребуется х кг сахара на 9 кг малины. Масса малины и масса сахара — прямо пропорциональные величины: во сколько раз меньше малины, во столько же раз нужно меньше сахара. Следовательно, отношение взятой (по массе) малины (12:9) будет равно отношению взятого сахара (8:х). Получаем пропорцию:

12:9=8:х;

х=9·8:12;

х=6. Ответ: на 9 кг малины нужно взять 6 кг сахара.

Решение задачи можно было оформить и так:

Пусть на 9 кг малины нужно взять х кг сахара.

(Стрелки на рисунке направлены в одну сторону, а вверх или вниз — не имеет значения. Смысл: во сколько раз число 12 больше числа 9, во столько же раз число 8 больше числа х, т. е. здесь прямая зависимость).

Ответ: на 9 кг малины надо взять 6 кг сахара.

Задача 2.Автомобиль за 3 часа проехал расстояние 264 км. За какое время он проедет 440 км, если будет ехать с той же скоростью?

Решение.

Пусть за х часов автомобиль пройдет расстояние 440 км.

Ответ: автомобиль пройдет 440 км за 5 часов.

Сегодня на уроке мы продолжим работать спропорциями, а точнее познакомимся с прямой и обратнойпропорциональными зависимостями.

Задача

Сколько нужно сахара, чтобы сварить варенье из 5 кг черешни, если по рецепту на 2 кг ягод нужно 3 кгсахара?

Решение:

Из решения видно, что во сколько раз больше имеетсячерешни, во столько раз больше понадобится сахара.

Эту же задачу можно решить и при помощи пропорции.Запишем кратко условие задачи в виде таблицы, обозначив за неизвестную наммассу сахара буквой х.

Смотрите, у нас есть столбик, где мы будемзаписывать массу ягод, и столбик, где мы укажем соответствующую массу сахара намассу ягод. Итак, по условию задачи известно, что по рецепту на 2 кг ягод нужно 3 кг сахара.

Нам нужно узнать,сколько кг сахара потребуется на 5 кг ягод.

Такая зависимость между массой ягод и массой сахараусловно обозначается в таблице одинаково направленными стрелками. Ихнаправление говорит о том, что если первая величина возрастает (стрелка вверх),то и вторая тоже возрастает (стрелка тоже вверх).

Задача

Велосипедист, двигаясь с постоянной скоростью,проехал 10 км за 20минут. Какой путь проедет велосипедист за 50минут?

Решение: для наглядностизапишем кратко условие задачи в виде таблицы.

Понятно, что путь увеличится во столько раз, восколько раз увеличится время. Ставим стрелки в одном направлении.

Такие величины, как масса ягод для варенья и массасахара, время и пройденный за это время при постоянной скорости путь, и т.д.называют прямо пропорциональными величинами.

Определение

Две величины называются прямопропорциональными, если при увеличении (уменьшении) одной из них в несколькораз другая увеличивается (уменьшается) во столько же раз.

Задача

Автомобиль ехал 3 часасо скоростью 60 км/ч. За какое время онпродет это же расстояние, если будет ехать со скоростью 90 км/ч?

Решение:
Из решения видно, что во сколько раз скоростьавтомобиля больше, во столько раз меньше времени тратится на этот жепуть.

Эту же задачу решим при помощи пропорции. Запишем втаблицу кратко условие задачи. За х обозначим неизвестное намвремя.

Понятно, что чем больше скорость автомобиля, темменьше времени ему понадобится на преодоление этого же пути.

Такаязависимость между скоростью и временем, затраченным на пройденный путь, условнообозначается в таблице противоположно направленными стрелками.

Ихнаправление говорит о том, что если первая величина возрастает (стрелка вверх),то вторая убывает (стрелка вниз). Составим пропорцию. Т.к. стрелки направлены вразные стороны, то второе отношение перевернём.

Задача

5 рабочих выполнили заказза 132 часа. За какое время этот же заказсмогут выполнить 12 рабочих?

Решение:

Понятно, что чем больше будет задействованорабочих, тем быстрее выполнится заказ. Значит, ставим стрелки впротивоположном направлении. Составим пропорцию:

Такие величины, как скорость автомобиля и время, закоторое он проедет определённый путь, число работников и время, за которое онивыполняют заказ, и т.д. называют обратно пропорциональными величинами.

Определение

Две величины называются обратнопропорциональными, если при увеличении (уменьшении) одной из них в несколькораз другая уменьшается (увеличивается) во столько же раз.

Не всякие две величины являются прямо пропорциональнымиили обратно пропорциональными.

Например,возраст человека и размер его обуви не связаны пропорциональнойзависимостью. Зависимость между величинами есть. Размер обуви с возрастомувеличивается, но не во столько же раз.

Возраст дерева и его высота не связаныпропорциональной зависимостью. В этом случае зависимость между величинами есть.Действительно, высота дерева с возрастом увеличивается, но не во столько жераз.

Обратная зависимость. Подробная теория с примерами (2020)

Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Сейчас мы будем говорить об обратной зависимости, или другими словами – обратной пропорциональности, как о функции. Ты помнишь, что функция – это определенного рода зависимость? Если ты еще не читал тему «Функции», настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое – функция.

Также очень полезно перед началом этой темы освоить две более простые функции: линейную и квадратичную. Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.

Итак, ты вспомнил, что такое функция?
Повторим: функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция  , это значит что каждому допустимому значению переменной   (которую называют «аргументом») соответствует одно значение переменной   (называемой «функцией»).

Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»! Все дело в понятии «область определения»: для некоторых функций не все аргументы одинаково полезны можно подставить в зависимость. Например, для функции   отрицательные значения аргумента   – недопустимы.

Функция, описывающая обратную зависимость

Это функция вида  , где  .

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.
Давай определим область определения. Чему может быть равен  ? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить – это  , поэтому  :

или, что то же самое,

(такая запись означает, что   может быть любым числом, кроме  : знак « » обозначает множество действительных чисел, то есть всех возможных чисел; знаком « » обозначается исключение чего-нибудь из этого множества (аналог знака «минус»), и число   в фигурных скобках означает просто число  ; получается, что из всех возможных чисел мы исключаем  ).

Множество значений функции, оказывается, точно такое же: ведь если  , то на что бы мы его не делили,   не получится:

  или  .

Также возможны некоторые вариации формулы  . Например,   – это тоже функция, описывающая обратную зависимость.
Определи самостоятельно область определения и область значений этой функции. Должно получиться:

Давай посмотрим на такую функцию:  . Является ли она обратной зависимостью?

На первый взгляд сложно сказать: ведь при увеличении   увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально? Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:

 .

Действительно, мы получили обратную зависимость, но с оговоркой:  .

Вот еще пример:  .

Тут сложнее: ведь числитель и знаменатель теперь уж точно не сокращаются. Но все-же мы можем попробовать:

Ты понял, что я сделал? В числителе я добавил и вычел одно и то же число ( ), таким образом я вроде бы ничего не изменил, но теперь в числителе есть часть, равная знаменателю. Теперь я почленно поделю, то есть разобью эту дробь на сумму двух дробей:

(и правда, если привести то что у меня получилось к общему знаменателю, получится как-раз наша начальная дробь):

Ух ты! Снова получается обратная зависимость, только теперь к ней еще прибавляется число  .
Этот метод нам очень пригодится позже при построении графиков.

А теперь самостоятельно приведи выражения к виду обратной зависимости:

Ответы:

1.  

2. Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»). Напомню, что для этого надо найти корни соответствующего квадратного уравнения:  . Я найду их устно с помощью теоремы Виета:  ,  . Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».
Итак, получаем:  , следовательно:

3. Ты уже попробовал решить сам? В чем загвоздка? Наверняка в том, что в числителе у нас  , а в знаменателе – просто  . Это не беда. Нам нужно будет сократить на  , поэтому в числителе следует вынести   за скобки (чтобы в скобках   получился уже без коэффициента):

  дальше сам.
Ответ:  .

График обратной зависимости

Как всегда, начнем с самого простого случая:  .
Составим таблицу:

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как? Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть. График будет выглядеть так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом. Каждая из них стремится своими концами приблизиться к осям   и  , но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как  , график не может пересекать ось  . Но и  , так что график никогда не коснется и оси  .

Ну что же, теперь посмотрим, на что влияют коэффициенты. Рассмотрим такие функции:
 :

Ух ты, какая красота!
Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь? Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси  .

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например,  ?

В этом случае гипербола будет точно такой же, как обычная  , только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен  ? Правильно,  . Значит, график никогда не достигнет прямой  . А чему не может быть равен  ? Теперь  .

Значит, теперь график будет стремиться к прямой  , но никогда ее не пересечет. Итак, теперь прямые   и   выполняют ту же роль, которую выполняют координатные оси для функции  .

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим в теме «Построение графика обратной зависимости».

А теперь попробуй решить несколько примеров для закрепления:

1. На рисунке изображен график функции  . Определите  .

2. На рисунке изображен график функции  . Определите  

3. На рисунке изображен график функции  . Определите  .

4. На рисунке изображен график функции  . Определите  .

5. На рисунке приведены графики функций   и  .

Выбери верное соотношение:

a.  

b.  

c.  

d.  

Ответы:

1.  

2.  

3.  

4.  

5.  

Обратная зависимость в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный – это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние. И правда, вспомним формулу скорости:  , где   – скорость,   – время в пути,   – расстояние (путь).

Отсюда можно выразить время:  

Пример:

Человек едет на работу со средней скоростью   км/ч, и доезжает за   час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью   км/ч?

Решение:

Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:

  км/ч –   мин.
  км/ч –   мин.

Далее ты определял, что это обратная пропорциональность, так как чем больше скорость, тем меньше время. Значит, чтобы решить эту пропорцию, нужно поделить числа «крест-накрест»:

 (мин).

То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.

Функция (то есть зависимость) времени в минутах от скорости:

 .

Известно, что  , тогда:

 .

Нужно найти  :

  (мин).

Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.
Придумал? Молодец, если да. Удачи!

Обратная зависимость. коротко о главном

1. Определение

Функция, описывающая обратную зависимость – это функция вида  , где  .

По-другому эту функцию называют обратной пропорциональностью, так как увеличение аргумента вызывает пропорциональное уменьшение функции.

При этом  

  или, что то же самое,  

График обратной зависимости – гипербола.

2. Коэффициенты  ,   и  .

  – отвечает за «пологость» и направление графика: чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента   влияет на то, в каких четвертях расположен график:

  • если  , то ветви гиперболы расположены в   и   четвертях;
  • если  , то во   и  .

x=a – это вертикальная асимптота,то есть вертикаль, к которой стремится график.

Число   отвечает за смещение графика функции вверх на величину  , если  , и смещение вниз, если  .

Следовательно,   – это горизонтальная асимптота.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике, 

А также получить доступ к учебнику YouClever без ограничений…

Прямая и обратная пропорциональность

Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Пропорциональность – это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

Пропорциональность величин может быть прямой и обратной.

Формула прямой пропорциональности

Формула прямой пропорциональности:

y = kx

где y и x – это переменные величины, а k – это постоянная величина, называемая коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности – это отношение любых соответствующих значений пропорциональных переменных y и x равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Обратная пропорциональность

Рассмотрим следующий пример. Расстояние между двумя городами 80 км. Мотоциклист выехал из первого города, и со скоростью 20 км/ч доехал до второго города за 4 часа.

Если скорость мотоциклиста составила 20 км/ч это значит, что каждый час он проезжал расстояние равное двадцати километрам. Изобразим на рисунке расстояние, пройденное мотоциклистом, и время его движения:

На обратном пути скорость мотоциклиста была 40 км/ч, и на тот же путь он затратил 2 часа.

Легко заметить, что при изменении скорости, время движения изменилось во столько же раз. Причем изменилось в обратную сторону — то есть скорость увеличилась, а время наоборот уменьшилось.

Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

К примеру, если на обратном пути скорость мотоциклиста составила бы 10 км/ч, то те же 80 км он преодолел бы за 8 часов:

Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.

Особенность обратно пропорциональных величин заключается в том, что их произведение всегда постоянно. То есть при изменении значений обратно пропорциональных величин, их произведение остается неизменным.

В рассмотренном примере расстояние между городами было равно 80 км. При изменении скорости и времени движения мотоциклиста, это расстояние всегда оставалось неизменным

Мотоциклист мог проехать это расстояние со скоростью 20 км/ч за 4 часа, и со скоростью 40 км/ч за 2 часа, и со скоростью 10 км/ч за 8 часов. Во всех случаях произведение скорости и времени было равно 80 км

Понравился урок?
Вступай в нашу новую группу и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Пропорции свойства прямая и обратная пропорциональность. Практическое применение прямой и обратной пропорциональной зависимости

Прямая и обратная пропорциональность как определить. Практическое применение прямой и обратной пропорциональной зависимости

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x≠ 0 и k≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y= 0. Е(у):(-∞; 0)U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k> 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k< 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k> 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k< 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V 2 , которая по условию выше в 2 раза: V 2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t 2 , которое требуется от нас по условию задачи: t 2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч

↓120 км/ч – х ч

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч

↓ 3 рабочих – х ч

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин

↓ х л/мин – 75 мин

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч

↓ 48 визитки/ч – х ч

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.