Производная кубического корня сложной функции. Производная сложной функции

Правила вычисления производных. Таблица производных часто встречающихся функций. Таблица производных сложных функций

Производная кубического корня сложной функции. Производная сложной функции

Справочник по математикеЭлементы математического анализаПроизводная функции

     Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.

      Правило 1 (производная от произведения числа на функцию). Справедливо равенство

(c f (x))' = c f ' (x) ,

где  c – любое число.

      Другими словами, производная от произведения числа на функцию равна произведению этого числа на производную функции.

      Правило 2 (производная суммы функций). Производная суммы функций вычисляется по формуле

(f (x) + g (x))' = f ' (x) + g' (x),

то есть производная от суммы функций равна сумме производных этих функций.

      Правило 3 (производная разности функций). Производная разности функций вычисляется по формуле

(f (x) – g (x))' = f ' (x) – g' (x),

то есть производная от разности функций равна разности производных этих функций.

      Правило 4 (производная произведения двух функций). Производная произведения двух функций вычисляется по формуле

(f (x) g (x))' =
= f ' (x) g (x) + f (x) g' (x),

      Другими словами, производная от произведения двух функций равна производной от первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную от второй функции.

      Правило 5 (производная частного двух функций). Производная от дроби (частного двух функций) вычисляется по формуле

      Определение. Рассмотрим функции   f (x)   и   g (x) .  Сложной функцией или «функцией от функции» называют функцию вида

f (g (x))

При этом функцию   f (x)   называют внешней функцией, а функцию   g (x)  – внутренней функцией.

      Правило 6 (производная сложной функции). Производная сложной функции вычисляется по формуле
[ f (g (x))]' = f ' (g (x)) g' (x)

      Другими словами, для того, чтобы найти производную от сложной функции   f (g (x))   в точке   x   нужно умножить производную внешней функции, вычисленную в точке   g (x) ,   на производную внутренней функции, вычисленную в точке   x .

Таблица производных часто встречающихся функций

      В следующей таблице приведены формулы для производных от степенных, показательных (экспоненциальных), логарифмических, тригонометрических и обратных тригонометрических функций. Доказательство большинства их этих формул выходит за рамки школьного курса математики.

ФункцияФормула для производнойНазвание формулы
y = c ,где  c – любое числоy' = 0Производная от постоянной функции
y = x c ,где  c – любое числоy' = c xc – 1Производная степенной функции
y = e xy' = e xПроизводная от экспоненты (показательной функции с основанием   e)
y = a xгде  a – любое положительное число, не равное 1y' = a x ln aПроизводная от показательной функции с основанием   a
y = ln x ,   x > 0,   x > 0Производная от натурального логарифма
y = log a x ,   x > 0где  a – любое положительное число, не равное 1,   x > 0Производная от логарифма по основанию   a
y = sin xy' = cos xПроизводная синуса
y = cos xy' = – sin xПроизводная косинуса
y = tg x , ,Производная тангенса
y = ctg x , ,Производная котангенса
y = arcsin x ,Производная арксинуса
y = arccos x ,Производная арккосинуса
y = arctg xПроизводная арктангенса
y = arcctg xПроизводная арккотангенса
Производная от постоянной функции
Функция:y = c ,где  c – любое числоФормула для производной:y' = 0
Производная степенной функции
Функция:y = x c ,где  c – любое числоФормула для производной:y' = c xc – 1
Производная от экспоненты (показательной функции с основанием   e)
Функция:y = e xФормула для производной:y' = e x
Производная от показательной функции с основанием   a
Функция:y = a xгде  a – любое положительное число, не равное 1Формула для производной:y' = a x ln a
Производная от натурального логарифма
Функция:y = ln x ,   x > 0Формула для производной:,   x > 0
Производная от логарифма по основанию   a
Функция:y = log a x ,   x > 0где  a – любое положительное число, не равное 1Формула для производной:,   x > 0
Производная синуса
Функция:y = sin xФормула для производной:y' = cos x
Производная косинуса
Функция:y = cos xФормула для производной:y' = – sin x
Производная тангенса
Функция:y = tg x ,гдеФормула для производной: ,
Производная котангенса
Функция:y = ctg x ,гдеФормула для производной: ,
Производная арксинуса
Функция:y = arcsin x ,Формула для производной:
Производная арккосинуса
Функция:y = arccos x ,Формула для производной:
Производная арктангенса
Функция:y = arctg xФормула для производной:
Производная арккотангенса
Функция:y = arcctg xФормула для производной:

Таблица производных сложных функций

      В следующей таблице приведены формулы для производных сложных функций.

      В отдельных строках (с желтым фоном) приведены формулы для производных сложных функций в случае, когда внутренняя функция является линейной функцией и имеет вид   f (x) = kx + b , где  k  и  b  – любые числа, .

ФункцияФормула для производной
y = (kx + b) c ,где  c – любое число.y' = kc (kx + b) c – 1 ,
y = ( f (x)) c ,где  c – любое число.
y = ekx + by = kekx + b
y = e f (x)
y = akx + bгде  a – любое положительное число, не равное 1
y = a f (x)где  a – любое положительное число, не равное 1
y = ln (kx + b) ,   kx + b > 0,kx + b > 0
y = ln ( f (x)) ,   f (x) > 0,f (x) > 0
y = log a (kx + b) ,   kx + b > 0где  a – любое положительное число, не равное 1,   kx + b > 0
y = log a ( f (x)) ,   f (x) > 0где  a – любое положительное число, не равное 1,   f (x) > 0
y = sin (kx + b)y' = k cos (kx + b)
y = sin ( f (x))
y = cos (kx + b)y' = – k sin (kx + b)
y = cos ( f (x))
y = tg (kx + b),где,
y = tg ( f (x)),где,
y = ctg (kx + b),где ,
y = ctg ( f (x)),где ,
y = arcsin (kx + b),
y = arcsin ( f (x)),
y = arccos (kx + b),
y = arccos ( f (x)),
y = arctg (kx + b)
y = arctg ( f (x))
y = arcctg (kx + b)
y = arcctg ( f (x))
Функция:y = (kx + b) c ,где  c – любое число.Формула для производной:y' = kc (kx + b) c – 1 ,
Функция:y = ( f (x)) c ,где  c – любое число.Формула для производной:
Функция:y = ekx + bФормула для производной:y = kekx + b
Функция:y = e f (x)Формула для производной:
Функция:y = akx + bгде  a – любое положительное число, не равное 1Формула для производной:
Функция:y = a f (x)где  a – любое положительное число, не равное 1Формула для производной:
Функция:y = ln (kx + b) ,   kx + b > 0Формула для производной:,   kx + b > 0
Функция:y = ln ( f (x)) ,   f (x) > 0Формула для производной:,   f (x) > 0
Функция:y = log a (kx + b) ,   kx + b > 0где  a – любое положительное число, не равное 1Формула для производной:,   kx + b > 0
Функция:y = log a ( f (x)) ,   f (x) > 0где  a – любое положительное число, не равное 1Формула для производной:,   f (x) > 0
Функция:y = sin (kx + b)Формула для производной:y' = k cos (kx + b)
Функция:y = sin ( f (x))Формула для производной:
Функция:y = cos (kx + b)Формула для производной:y' = – k sin (kx + b)
Функция:y = cos ( f (x))Формула для производной:
Функция:y = tg (kx + b),гдеФормула для производной:,
Функция:y = tg ( f (x)),гдеФормула для производной:,
Функция:y = ctg (kx + b),гдеФормула для производной: ,
Функция:y = ctg ( f (x)),гдеФормула для производной: ,
Функция:y = arcsin (kx + b),Формула для производной:
Функция:y = arcsin ( f (x)),Формула для производной:
Функция:y = arccos (kx + b),Формула для производной:
Функция:y = arccos ( f (x)),Формула для производной:
Функция:y = arctg (kx + b)Формула для производной:
Функция:y = arctg ( f (x))Формула для производной:
Функция:y = arcctg (kx + b)Формула для производной:
Функция:y = arcctg ( f (x))Формула для производной:

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Производная сложной функции

Производная кубического корня сложной функции. Производная сложной функции

Пусть y – сложная функция x, т.е. y = f(u), u = g(x), или

Если g(x) и f(u) – дифференцируемые функции своих аргументов соответственно в точках x и u = g(x), то сложная функция также дифференцируема в точке x и находится по формуле

Типичная ошибка при решении задач на производные – машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.

Посмотрите на формулу 9 в таблице производных. Исходная функция является функцией от функции, причём аргумент x является аргументом лишь второй функции, а вторая функция является аргументом первой функции, или, согласно более строгому определению – промежуточным аргументом по независимой переменной x.

А теперь посмотрите на картинку ниже, которая иллюстрирует решение задач на сложные производные по аналогии с простым примером из кулинарии – приготовлении запечёных яблок, фаршированных ягодами.

Итак, “яблоко” – это функция, аргументом которой является промежуточный аргумент, а промежуточный аргумент по независимой переменной x, в свою очередь, является “фаршем” (ягодами).

Представим себе, что решая задачи на производные сложной функции, сначала помещаем яблоко с фаршем в особую (физико-математическую) духовку и устанавливаем режим 1.

При таком режиме духовка воздействует только на “яблоко”, поскольку нужно, допустим, больше пропечь яблоко, а фарш из ягод оставить более сочным, то есть обрабатывать в другом режиме.

Итак, в при режиме 1 обрабатывается яблоко, а фарш остаётся незатронутым, или, ближе к нашим задачам, находим производную функции лишь от промежуточного аргумента, то есть, “яблока”. Затем в духовке устанавливается режим 2, который воздействует только на фарш, иначе говоря, записываем производную функции, являющейся промежуточным аргументом по независимой переменной x. И, в конце концов, записываем произведение производной “яблока” и производной “фарша”. Можно подавать!

Пример 1.Найти производную функции

Сначала определим, где здесь “яблоко”, то есть функция по промежуточному аргументу u, а где “фарш”, то есть промежуточный аргумент u по независимой переменной x. Определяем: возведение в степень – это функция по промежуточному аргументу, то есть “яблоко”, а выражение в скобках (разность двух тригонометрических функций) – это промежуточный аргумент, то есть “фарш”.

Тогда

Далее по таблице производных (производная суммы или разности, производные синуса и косинуса) находим:

Требуемая в условии задачи производная (готовое “фаршированое яблоко”):

Нахождение производной сложной логарифмической функции имеет свои особенности, поэтому у нас есть и урок “Производная логарифмической функции”.

Пример 2.Найти производную функции

Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:

Правильное решение: опять определяем, где “яблоко”, а где “фарш”. Здесь натуральный логарифм от выражения в скобках – это “яблоко”, то есть функция по промежуточному аргументу u, а выражение в скобках – “фарш”, то есть промежуточный аргумент u по независимой переменной x.

Тогда (применяя формулу 14 из таблицы производных)

Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок “Производная логарифмической функции”.

Пример 3.Найти производную функции

Неправильное решение:

Правильное решение. В очередной раз определяем, где “яблоко”, а где “фарш”.

Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это “яблоко”, оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени – номер 3 в таблице производных) – это “фарш”, он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:

Производная сложной логарифмической функции – частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок “Производная логарифмической функции”.

Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией.

Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию.

Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования. Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.

Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций

,

то её производную следует находить как произведение производных каждой из этих функций:

.

Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Производная, дифференциал и их применение

Пример 4.Найти производную функции

Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:

Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:

Второе слагаемое – корень, поэтому

Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень – сложная функция, а то, что возводится в степень – промежуточный аргумент по независимой переменной x.

Поэтому вновь применим правило дифференцирования сложной функции:

Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:

Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y:

Тогда

Пример 5.Найти производную функции

Сначала воспользуемся правилом дифференцирования суммы:

Получили сумму производных двух сложных функций. Находим первую из них:

Здесь возведение синуса в степень – сложная функция, а сам синус – промежуточный аргумент по независимой переменной x. Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки:

Теперь находим второе слагаемое из образующих производную функции y:

Здесь возведение косинуса в степень – сложная функция f[g(x)], а сам косинус – промежуточный аргумент по независимой переменной x. Снова воспользуемся правилом дифференцирования сложной функции:

Результат – требуемая производная:

Таблица производных некоторых сложных функций

Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.

1. Производная сложной степенной функции, где u – дифференцируемая функция аргумента x
2. Производная корня от выражения
3. Производная показательной функции
4. Частный случай показательной функции
5. Производная логарифмической функции с произвольным положительным основанием а
6. Производная сложной логарифмической функции, где u – дифференцируемая функция аргумента x
7. Производная синуса
8. Производная косинуса
9. Производная тангенса
10. Производная котангенса
11. Производная арксинуса
12. Производная арккосинуса
13. Производная арктангенса
14. Производная арккотангенса

Найти производную сложной функции самостоятельно, а затем посмотреть решение

Пример 6.Найти производную функции

Посмотреть правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Производная, дифференциал и их применение

с друзьями

Весь блок “Производная”

Производная степенной функции (степени и корни)

Производная кубического корня сложной функции. Производная сложной функции

Вывод формулы производной степенной функции (x в степени a). Рассмотрены производные от корней из x. Формула производной степенной функции высшего порядка. Примеры вычисления производных.

Производная от x в степени a равна a, умноженному на x в степени a минус один:
(1)   .

Производная от корня степени n из x в степени m равна:
(2)   .

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a:
(3)   .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Теперь находим производную, применяя правило дифференцирования сложной функции:
;
.
Здесь .

Формула (1) доказана.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4)   .

Чтобы найти производную, преобразуем корень к степенной функции:
. Сравнивая с формулой (3) мы видим, что

.

Тогда

.

По формуле (1) находим производную:
(1)   ;
;
(2)   .

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0. Найдем производную функции (3) при x = 0. Для этого воспользуемся определением производной:
.

Подставим x = 0:
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , . Этот результат получается и по формуле (1):

(1)   .

Поэтому формула (1) справедлива и при x = 0.

Случай x < 0

Снова рассмотрим функцию (3):
(3)   .
При некоторых значениях постоянной a, она определена и при отрицательных значениях переменной x. А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n – целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x. Например, при n = 3 и m = 1 мы имеем кубический корень из x:
.
Он определен и при отрицательных значениях переменной x.

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a, для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции:

.
Здесь . Но
.
Поскольку , то
. Тогда

.

То есть формула (1) справедлива и при :
(1)   .

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3)   . Производную первого порядка мы уже нашли:

.

Вынося постоянную a за знак производной, находим производную второго порядка:
. Аналогичным образом находим производные третьего и четвертого порядков:

;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом, , то n-я производная является постоянной:
. Тогда все последующие производные равны нулю:

,

при .

Пример

Найдите производную функции:
.

Решение

Преобразуем корни к степеням:
;
. Тогда исходная функция приобретает вид:

.

Находим производные степеней:
;
. Производная постоянной равна нулю:

.

Применяем правило дифференцирования суммы и выносим постоянные за знак производной:

.

Применяем правило дифференцирования сложной функции:

.
Здесь .

Преобразуем степени в корни:
;
;
;
;
;
.

Ответ

Еще примеры

Найти производные следующих функций, зависящих от переменной x:
    Решение > > >           Решение > > >           Решение > > >           Решение > > >           Решение > > >      

Найти производную шестого порядка следующей функции:
.
Решение > > >

Все примеры > > >

Олег Одинцов.     : 09-04-2017

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.