Примеры вычисления сложных пределов. Пределы

Математика

Примеры вычисления сложных пределов. Пределы

Тема 4.6.Вычисление пределов

Предел функции не зависит от того, определена она в предельной точке или нет. Но в практике вычисления пределов элементарных функций это обстоятельство имеет существенное значение.

1. Если функция является элементарной и если предельное значение аргумента принадлежит ее области определения, то вычисление предела функции сводится к простой подстановке предельного значения аргумента, т.к.

предел элементарной функции f ( x ) при х стремящемся к а, которое входит в область определения, равен частному значению функции при х=а, т.е. lim f(x)=f(a) .

2. Если х стремится к бесконечности  или аргумент стремится к числу, которое не принадлежит области определения функции, то в каждом таком случае нахождение предела функции требует специального исследования.

Ниже приведены простейшие пределы, основанные на свойствах пределов, которые можно использовать как формулы:

Более сложные случаи нахождения предела функции:

 рассматриваются каждый в отдельности.

В этом разделе будут приведены основные способы раскрытия неопределенностей.

1. Случай, когда при х стремящемся к  афункция f ( x ) представляет отношение двух бесконечно малых величин

а) Сначала нужно убедится, что предел функции нельзя найти непосредственной подстановкой и при указанном изменении аргумента она представляет отношение двух бесконечно малых величин. Делаются преобразования, чтобы сократить дробь на множитель, стремящийся к 0. Согласно определению предела функции аргумент х стремится к своему предельному значению, никогда с ним не совпадая.

Вообще если ищется предел функции при х стремящемся к а, то необходимо помнить, что х не принимает значения а, т.е. х не равен а.

б) Применяется теорема Безу. Если ищется предел дроби, числитель и знаменатель которой многочлены, обращающиеся в 0 в предельной точке х=а, то согласно вышеназванной теореме оба многочлена делятся без остатка на х-а.

в) Уничтожается иррациональность в числителе или в знаменателе путем умножения числителя или знаменателя на сопряженное к иррациональному выражение, затем после упрощения дробь сокращается.

г) Используется 1-й замечательный предел (4.1).

д) Используется теорема об эквивалентности бесконечно малых и следующие б.м.:

2. Случай, когда при х стремящемся к  афункция f ( x ) представляет отношение двух бесконечно больших величин

а) Деление числителя и знаменателя дроби на наивысшую степень неизвестного.

б) В общем случае можно использовать правило

3. Случай, когда  при х стремящемся к афункция f ( x ) представляет произведение бесконечно малой величины на бесконечно большую

Дробь преобразовывается к виду, числитель и знаменатель которой одновременно стремятся к 0 или к бесконечности , т.е. случай 3 сводится к случаю 1 или случаю 2.

4. Случай, когда  при х стремящемся к  афункция f ( x ) представляет разность двух положительных бесконечно больших величин

Этот случай сводится к виду 1 или 2 одним из следующих способов:

а) приведение дробей к общему знаменателю;

б) преобразование функции к виду дроби;

в) избавление от иррациональности.

5. Случай, когда при  х стремящемся к  афункция f ( x ) представляет степень, основание которой стремится к 1, а показатель к бесконечности .

Функция преобразовывается таким образом, чтобы использовать 2-й замечательный предел (4.2).

Пример. Найти  .

Так как х стремится к 3, то числитель дроби стремится к числу 32+3 *3+4=22, а знаменатель- к числу 3+8=11. Следовательно,

Пример

Здесь числитель и знаменатель дроби при х стремящемся к 2 стремятся к 0 (неопределенность вида ), разложим числитель и знаменатель на множители, получим  lim(x-2)(x+2)/(x-2)(x-5)

Пример

Умножим числитель и знаменатель на выражение, сопряженное к числителю, имеем

Раскрываем скобки в числителе, получим

Пример

Уровень 2. Пример. Приведем пример применения понятия предела функции в экономических расчетах. Рассмотрим обыкновенную финансовую сделку: предоставление в долг суммы S0 с условием, что через период времени T будет возвращена сумма ST. Определим величину rотносительного роста формулой

r=(ST -S0)/S0     (1)

Относительный рост можно выразить в процентах, умножив полученное значение r на 100.

Из формулы (1) легко определить величину ST:

ST = S 0 (1 + r )

При расчете по долгосрочным кредитам, охватывающим несколько полных лет, используют схему сложных процентов.

Она состоит в том, что если за 1-й год сумма S0 возрастает в (1 + r) раз, то за второй год в (1 + r) раз возрастает сумма S1 = S0(1 + r), то есть S2 = S0(1 + r)2.

Аналогично получается S3 = S0(1 + r)3. Из приведенных примеров можно вывести общую формулу для вычисления роста суммы за n лет при расчете по схеме сложных процентов:

Sn = S 0 (1 + r ) n .

В финансовых расчетах применяются схемы, где начисление сложных процентов производится несколько раз в году. При этом оговариваются годовая ставкаr и количество начислений за годk.

Как правило, начисления производятся через равные промежутки времени, то есть длина каждого промежутка Tk составляет часть года.

Тогда для срока в T лет (здесь T не обязательно является целым числом) сумма ST рассчитывается по формуле

(2)

где — целая часть числа , которая совпадает с самим числом, если, например, T ? целое число.

Пусть годовая ставка равна r и производится n начислений в год через равные промежутки времени. Тогда за год сумма S0 наращивается до величины, определяемой формулой

(3)

В теоретическом анализе и в практике финансовой деятельности часто встречается понятие “непрерывно начисляемый процент”.

Чтобы перейти к непрерывно начисляемому проценту, нужно в формулах (2) и (3) неограниченно увеличивать соответственно, числа k и n (то есть устремить k и n к бесконечности) и вычислить, к какому пределу будут стремиться функции ST и S1. Применим эту процедуру к формуле(3):

Заметим, что предел в фигурных скобках совпадает со вторым замечательным пределом. Отсюда следует, что при годовой ставке r при непрерывно начисляемом проценте сумма S0 за 1 год наращивается до величины S1*, которая определяется из формулы

S1* = S0er   (4)

Пусть теперь сумма S0 предоставляется в долг с начислением процента n раз в год через равные промежутки времени.

Обозначим re годовую ставку, при которой в конце года сумма S0 наращивается до величины S1* из формулы (4).

В этом случае будем говорить, что re — это годовая ставка при начислении процента n раз в год, эквивалентная годовому проценту r при непрерывном начислении. Из формулы (3) получаем

S*1=S0(1+re/n)n

Приравнивая правые части последней формулы и формулы (4), полагая в последней T = 1, можно вывести соотношения между величинами r и re:

Эти формулы широко используются в финансовых расчётах.

Пропустить Поиск по форумам Пропустить Тесты 3333 Пропустить Пользователи на сайте Пропустить Категории курсов Пропустить Последние объявления Пропустить Предстоящие события Пропустить Последние действия

Со времени Вашего последнего входа ничего не произошло

Page 3

Перейти к основному содержанию MOODLE КНИТУ (КХТИ) Скачать мобильное приложение

Пределы числовых последовательностей

Примеры вычисления сложных пределов. Пределы

      Определение 1. Число   a   называют пределом числовой последовательности

a1 ,  a2 , … an , …

если для любого положительного числа   ε   найдется такое натуральное число   N ,   что при всех   n > N   выполняется неравенство

| an – a | < ε .

      Условие того, что число   a   является пределом числовой последовательности

a1 ,  a2 , … an , … ,

записывают с помощью обозначения

и произносят так: «Предел   an   при   n ,   стремящемся к бесконечности, равен   a ».

      То же самое соотношение можно записать следующим образом:

an → a   при .

Словами это произносится так: «an   стремится к   a   при   n ,   стремящемся к бесконечности».

      Замечание. Если для последовательности

a1 ,  a2 , … an , …

найдется такое число   a ,   что   an → a   при , то эта последовательность ограничена.

      Определение 2. Говорят, что последовательность

a1 ,  a2 , … an , …

стремится к бесконечности, если для любого положительного числа   C   найдется такое натуральное число   N ,   что при всех   n > N   выполняется неравенство

| an| > C .

      Условие того, что числовая последовательность

a1 ,  a2 , … an , … ,

стремится к бесконечности, записывают с помощью обозначения

или с помощью обозначения

 при .

      Пример 1. Для любого числа   k > 0   справедливо равенство

      Пример 2 . Для любого числа   k > 0   справедливо равенство

      Пример 3. Для любого числа   a   такого, что   | a | < 1,   справедливо равенство

      Пример 4. Для любого числа   a   такого, что   | a | > 1,   справедливо равенство

      Пример 5 . Последовательность

– 1 , 1 , – 1 , 1 , … ,

заданная с помощью формулы общего члена

an = (– 1)n ,

предела не имеет.

Свойства пределов числовых последовательностей

      Рассмотрим две последовательности

a1 ,  a2 , … an , … ,   и   b1 ,  b2 , … bn , … .

Если при существуют такие числа   a   и   b ,  что

  и   ,

то при существуют также и пределы суммы, разности и произведения этих последовательностей, причем

      Если, кроме того, выполнено условие

то при существует предел дроби

причем

      Для любой непрерывной функции   f (x)   справедливо равенство

Вывод формулы для суммы членов бесконечно убывающей геометрической прогрессии

      Рассмотрим геометрическую прогрессию

b1 ,  b2 , … bn , … ,

знаменатель которой равен   q .  

      Для суммы первых   n   членов геометрической прогрессии

Sn = b1 + b2 + … + bn  ,       n = 1, 2, 3, …

справедлива формула

      Если для суммы всех членов бесконечно убывающей геометрической прогрессии ввести обозначение

S = b1 + b2 + … + bn + … ,

то будет справедлива формула

      В случае бесконечно убывающей геометрической прогрессии знаменатель   q   удовлетворяет неравенству

| q | < 1 ,

поэтому, воспользовавшись cвойствами пределов числовых последовательностей и результатом примера 3, получаем

      Итак,

Примеры вычисления пределов последовательностей. Раскрытие неопределенностей

      Определение 3. Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к, то вычисление такого предела называют раскрытием неопределенности типа .

      Часто неопределенность типа удается раскрыть, если и в числителе дроби, и в знаменателе дроби вынести за скобки «самое большое» слагаемое. Например, в случае, когда в числителе и в знаменале дроби стоят многочлены, «самым большим» слагаемым будет член с наивысшей степенью.

      Пример 6. Найти предел последовательности

      Решение. Сначала преобразуем выражение, стоящее под знаком предела, воспользовавшись свойствами степеней:

      Ответ.

      Пример 7 . Найти предел последовательности

      Ответ.

      В следующих двух примерах показано, как можно раскрыть неопределенности типа.

      Пример 8 . Найти предел последовательности

      Решение. Сначала преобразуем выражение, стоящее под знаком предела, приводя дроби к общему знаменателю:

      Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое в каждой из скобок знаменателя дроби:

Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем

      Ответ.

      Пример 9. Найти предел последовательности

      Решение. В рассматриваемом примере неопределенность типа возникает за счет разности двух корней, каждый из которых стремится к. Для того, чтобы раскрыть неопределенность, домножим и разделим выражение, стоящее под знаком предела, на сумму этих корней и воспользуемся формулой сокращенного умножения «разность квадратов».

      Из-за большого размера формул подробные вычисления видны только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах). На Вашем мобильном устройстве отображается только результат описанных операций.

      Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое из-под каждого корня в знаменателе дроби,а затем сокращая дробь на n2:

Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем

      Ответ.

      Пример 10. Найти предел последовательности

      Решение. Замечая, что для всех   k = 2, 3, 4, …   выполнено равенство

,

получаем

      Ответ.   1 .

Число e. Второй замечательный предел

      Рассмотрим последовательность

(1)

      В дисциплине «Математический анализ», которую студенты естественнонаучных и технических направлений высших учебных заведений изучают на 1 курсе, доказывают, что последовательность (1) монотонно возрастает и ограничена сверху.

Из теоремы Вейерштрасса о монотонных и ограниченных последовательностях, доказательство которой выходит за рамки школьного курса математики, вытекает, что последовательность (1) имеет конечный предел.

Этот предел принято обозначать буквой   e.

      Таким образом, справедливо равенство

(2)

причем расчеты показывают, что число

e = 2,718281828459045…

и является иррациональным и трансцендентным числом.

      Число   e   играет исключительно важную роль в естествознании и, в частности, служит основанием натуральных логарифмов и основанием показательной функции

y = e x,

которую называют «экспонента».

      Число   e   также является пределом последовательности

(3)

что позволяет вычислять число   e   с любой точностью. Конечно же, доказательство формулы (3) выходит за рамки школьного курса математики.

      Замечание. Предел (2), в котором для последовательностей раскрывается неопределенность типа , называют вторым замечательным пределом. В разделе нашего справочника «Пределы функций» можно ознакомиться со вторым замечательным пределом для функций.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Пределы в математике для чайников: объяснение, теория, примеры решений

Примеры вычисления сложных пределов. Пределы

Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала – самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim – от английского limit – предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача – найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!

 

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе.

Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла.

В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Еще один вид неопределенностей: 0/0

В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

 

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос “как решать пределы в высшей математике”. Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Как решать пределы для чайников?

Примеры вычисления сложных пределов. Пределы

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что “скучная теория” должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение
а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$
Пример 2
$$ \lim \limits_{x \to 1} \frac{x2 + 2x + 1}{x + 1} $$
Решение
Внимание “чайникам” 🙂 Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:$$ \lim \limits_{x \to 1} \frac{x2+2 \cdot x+1}{x+1}=\frac{12+2 \cdot 1+1}{1+1} = $$$$ = \frac{4}{2}=2 $$Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними – это не так страшно как кажется 🙂
Ответ
$$ \lim \limits_{x \to 1} \frac{x2 + 2x + 1}{x + 1} = 2 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x2-1}{x+1} $
Решение
Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела. $$ \lim \limits_{x \to -1} \frac{x2-1}{x+1} = \frac{(-1)2-1}{-1+1}=\frac{0}{0} $$Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a2-b2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)Получаем, что числитель $ x2-1=(x-1)(x+1) $Продолжаем решать учитывая вышеприведенное преобразование:$$ \lim \limits_{x \to -1}\frac{x2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$
Ответ
$$ \lim \limits_{x \to -1} \frac{x2-1}{x+1} = -2 $$
Пример 4
$$ \lim \limits_{x \to 2}\frac{x2-4}{x2-4x+4} $$
Решение
$$ \lim \limits_{x \to 2}\frac{x2-4}{x2-4x+4} = \frac{0}{0} = $$$$ = \lim \limits_{x \to 2}\frac{(x-2)(x+2)}{(x-2)2} = $$$$ = \lim \limits_{x \to 2}\frac{x+2}{x-2} = \frac{2+2}{2-2} = \frac{4}{0} = \infty $$Бесконечность получилась в результате – это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность.
Ответ
$$ \lim \limits_{x \to 2}\frac{x2-4}{x2-4x+4} = \infty $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x2-1}{x+1} $
Решение
$ \lim \limits_{x \to \infty} \frac{x2-1}{x+1} = \frac{\infty}{\infty} $Что же делать? Как быть? Не стоит паниковать, потому что невозможное – возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем…$$ \lim \limits_{x \to \infty} \frac{x2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x2(1-\frac{1}{x2})}{x(1+\frac{1}{x})} = $$$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x2})}{(1+\frac{1}{x})} = $$Используя определение из примера 2 и подставляя в место х бесконечность получаем:$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$
Ответ
$$ \lim \limits_{x \to \infty} \frac{x2-1}{x+1} = \infty $$
Пример 6
$$ \lim \limits_{x \to \infty}\frac{x2-4}{x2-4x+4} $$
Решение
$$ \lim \limits_{x \to \infty}\frac{x2-4}{x2-4x+4} = \frac{\infty}{\infty} $$Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем…$$ \lim \limits_{x \to \infty}\frac{x2-4}{x2-4x+4} = \frac{\infty}{\infty} = $$$$ \lim \limits_{x \to \infty}\frac{x2(1-\frac{4}{x2})}{x2(1-\frac{4}{x}+\frac{4}{x2})} = $$$$ \lim \limits_{x \to \infty}\frac{1-\frac{4}{x2}}{1-\frac{4}{x}+\frac{4}{x2}} = \frac{1}{1} = 1 $$
Ответ
$$ \lim \limits_{x \to \infty}\frac{x2-4}{x2-4x+4} = 1 $$

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: “ноль делить на ноль” или “бесконечность делить на бесконечность” и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность “ноль делить на ноль” нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность “бесконечность делить на бесконечность”, тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы.

В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее.

Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Нужно подробное решение своей задачи?

ЗАКАЗАТЬ РЕШЕНИЕ

Теория пределов. Методика вычисления

Примеры вычисления сложных пределов. Пределы

Теория пределов – один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов.

Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности.

В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано.

Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается “не знаю! Не умею! Нас не учили!”

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.

Ничего сложного и мудрого в таких пределах нет – подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию.

Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x2+2x)/(4×2+3x-4),x=infinity).


Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности
Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.

Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени “икс” в числителе или знаменателе.

Далее на него упрощают числитель и знаменатель и находят предел функции
Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях.

Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю. Формулами предел можно записать так Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности
Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x2+3x-5)/(x2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется.

С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции.

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3×2+10x+7)/(x+1), x=-1).
Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.

Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль. После разложения предел функции можно записать в виде
Вот и вся методика вычисления предела функции.

Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2×2-7x+6)/(3×2-x-10), x=2).
Решение: Прямая подстановка показывает
что имеем неопределенность типа 0/0.

Разделим полиномы на множитель которій вносит особенность

Есть преподаватели которые учат, что полиномы 2 порядка то есть вида “квадратные уравнения” следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму.

Таким образом записываем функцию в виде простых множителей и вічисляем в предел
Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.

Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0. В числителе применяем формулу сокращенного умножения
и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.

Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное.

Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение
По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.
Для раскрытия умножаем и делим на сопряженное к числителю
Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0.

Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность.

Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета Таким образом числитель запишем в виде и подставим в предел Сведя разницу квадратов избавляемся особенности в числителе и знаменателе
Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

Вычисления пределов в Мейпл

Данный материал полезен прежде всего для студентов. Возможно в программе обучения, а некоторые для себя изучает математические программы для облегчения обучения и проверки решений. Это могут быть математические пакеты MathСad, Мathematica, Maple. Вычисления пределов в Мейпл достаточно просто организовать даже новичку. Все что нужно – правильно ввести функцию предел которой находим.

> restart;

Предел первой функции из тех которые рассматривали в Мейпл иметь следующую запись. Жмем конце “Enter” и получим конечное значение пределов
> limit((x2+3*x)/(2*x+5),x=3); 18/11

Предел второй функции получим из записи

> limit((x2+2*x)/(4*x2+3*x-4),x=infinity);
1/4

Третий пример примет следующий вид:

> limit((x2+3*x-5)/(x2+x+2),x=infinity);
1

Мэйпл без проблем находит первый замечательный предел

> limit(sin(x)/x,x=0);
1

и второй замечательный предел

> limit((1+1/x)x,x=infinity);
exp(1).

Фрагмент вычисления пределов в математическом пакете Мэйпл приведен ниже

С Мейплом Вы без труда найдете предел логарифма, тригонометрических, экспоненциальных и других функций.

Правило Лопиталя: теория и примеры решений

Примеры вычисления сложных пределов. Пределы

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция.

Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций.

Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

.

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a.

А в самой точке a они могут и не иметь производных.

При этом в окрестности точки a производная функции g(x) не равна нулю (g'(x)≠0) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

.

Правило Лопиталя для случая предела двух бесконечно больших величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a.

А в самой точке a они могут и не иметь производных.

При этом в окрестности точки a производная функции g(x) не равна нулю (g'(x)≠0) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

.

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе – производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

.

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Нет времени вникать в решение? Можно заказать работу!

Пример 7. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида – ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Раскрытие неопределённостей вида “ноль умножить на бесконечность”

Пример 11. Вычислить

.

Решение. Получаем

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов “ноль в степени ноль”, “бесконечность в степени ноль” и “один в степени бесконечность”

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

Итак,

.

Раскрытие неопределённостей вида “бесконечность минус бесконечность”

Это случаи, когда вычисление предела разности функций приводит к неопределённости “бесконечность минус бесконечность”: .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Пример 16. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Пример 17. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Производная, дифференциал и их применение

Весь блок “Производная”

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.