Как выглядит усеченный конус. Конус

Что это – усеченный конус? Способы получения. Линейные параметры фигуры. Формулы для объема и площади поверхности

Как выглядит усеченный конус. Конус

Рассмотрение свойств объемных фигур является одной из приоритетных задач геометрии. Важными характеристиками всех пространственных фигур являются объем и площадь поверхности. В статье раскрывается вопрос о том, что это — усеченный конус, и приводятся формулы для определения площади его поверхности и объема.

Фигура конус

Прежде чем отвечать на вопрос о том, что это — усеченный конус, необходимо познакомиться с фигурой, от которой он образован. Конусом в геометрии принято называть фигуру, получаемую с помощью соединения прямыми отрезками некоторой точки пространства со всеми точками заданной кривой.

Точка пространства не должна лежать в плоскости кривой, она называется вершиной конуса. Соединяющие отрезки – это образующие фигуры, а плоская кривая – это направляющая. Она ограничивает основание конуса. В свою очередь, совокупность всех образующих называется конической поверхностью.

Конус, основанием которого является круг, показан на рисунке.

«Земляк» – это соотечественник и поддержка на чужбине

Расстояние между вершиной фигуры и основанием называется высотой. Если соответствующий перпендикуляр пересекает основание в геометрическом центре, то фигуру называют прямой.
Канал ДНЕВНИК ПРОГРАММИСТА Жизнь программиста и интересные обзоры всего. , чтобы не пропустить новые видео.

Дальше в статье покажем, как, используя прямой круглый конус, получить усеченную фигуру.

Усеченный конус и способы его получения

Предположим, что у нас имеется фигура, которая была показана в предыдущем пункте. Возьмем плоскость, параллельную основанию конуса, и отсечем с помощью нее вершину фигуры. Этот процесс показан на рисунке.

Образованная над плоскостью фигура является конусом, а вот фигура под плоскостью – это конус усеченный.

Существует еще один способ получения рассматриваемой фигуры. Предположим, что имеется некоторая трапеция с двумя прямыми углами. Если вращать эту трапецию вокруг стороны, к которой прямые углы прилегают, то она опишет поверхность усеченного конуса. Этот способ получения фигуры демонстрирует схема ниже.

Сторона трапеции, вокруг которой выполнялось вращение, будет являться осью усеченного конуса. Отрезок, который на оси отсекают два основания фигуры, называется высотой. На рисунке отмечены образующая g и радиусы оснований конуса усеченного r и r'.

Наконец, третий способ получения усеченного конуса заключается в увеличении количества ребер усеченной пирамиды до бесконечного числа. Во время этого процесса пирамида постепенно перейдет в конус.

Полиакриловая кислота: способ получения, свойства, структура и практическое применение

Любопытно отметить, что форма рассматриваемой геометрической фигуры в первом приближении в природе характерна для действующего вулкана, что отчетливо видно на следующей фотографии.

Элементы фигуры и ее линейные характеристики

Усеченный конус – это пространственная фигура, состоящая из трех поверхностей. Две из них представляют собой круглые основания (верхнее и нижнее) и одна – боковую поверхность. В отличие от многогранников, рассматриваемая фигура не имеет вершин и граней.

Важными параметрами конуса усеченного являются радиусы каждого из оснований. Будем больший радиус обозначать r1, меньший – r2. Помимо радиусов фигуры, для ее однозначного определения необходимо знать либо высоту h, либо образующую g. Указанные параметры связаны математически следующим равенством:

g2 = h2 + (r1 – r2)2

Все четыре параметра используются для определения площади поверхности и объема.

Поверхность усеченного конуса

Как отмечалось, состоит поверхность фигуры из трех частей. Если отрезать каждое из оснований от фигуры, а затем вдоль образующей разрезать и развернуть боковую поверхность, то мы получим развертку усеченного конуса. Рисунок ниже показывает, как она выглядит.

Площади оснований усеченного конуса находятся по простой формуле для соответствующей величины круга:

So1 = pi × r12;

So2 = pi × r22

С площадью боковой поверхности дело обстоит несколько сложнее. Можно заметить, что она представляет собой сектор круга, некоего радиуса G, у которого вырезали центральную часть радиусом G-g. Если это учесть, то можно получить формулу для площади боковой поверхности Sb. Здесь ограничимся лишь приведением конечного выражения:

Sb = pi × (r1 + r2) × g

Это выражение можно записать через радиусы и высоту h, однако тогда оно будет иметь несколько громоздкий вид.

Складывая записанные выражения, получаем формулу для определения площади S всей поверхности усеченного конуса:

S = So1 + So2 + Sb = pi × r12 + pi × r22 + pi × (r1 + r2) × g =

= pi × (r12 + r22 + (r1 + r2) × g)

Объем фигуры

Как и любая фигура в пространстве, усеченный конус тоже обладает некоторым объемом. Этот объем ограничен двумя основаниями и боковой поверхностью. Здесь не будем приводить подробный вывод соответствующей формулы для V. Запишем, как и в случае с площадью поверхности, лишь конечный результат:

V = h × pi / 3 × (r12 + r22 + r1 × r2)

Эта формула, в отличие от выражения для площади S, в качестве параметров содержит радиусы усеченного конуса и его высоту.

Далее в статье покажем, как следует использовать приведенные формулы для решения конкретной геометрической задачи.

Задача на определение площади и объема усеченного конуса

Ниже на рисунке изображен усеченный конус и приведены его линейные параметры. Необходимой найти площадь поверхности и объем фигуры.

Начнем решать задачу с определения величины V. Ее вычисление не представляет никакого труда, поскольку известны все необходимые параметры. Подставляя их в формулу для V, получаем:

V = h × pi / 3 × (r12 + r22 + r1 × r2) =

= 10 × 3,14 / 3 × (82 + 12 + 8 × 1) ≈ 764,07 см3

Найденное значение соответствует 0,76 литра.

Чтобы найти площадь поверхности S, следует сначала вычислить длину образующей g фигуры. Она будет равна:

g = √(h2 + (r1 – r2)2) = √(102 + (8 – 1)2) ≈ 12,21 см

Значение образующей g мы округлили до сотых. Теперь можно воспользоваться формулой для площади S:

S = pi × (r12 + r22 + (r1 + r2) × g) = 3,14 × (82 + 12 + (8 + 1) × 12,21) ≈ 549,15 см2

Заметим, что формулы для V и S, которые мы использовали при решении задачи, справедливы только для круглого прямого усеченного конуса. В случае наклонной фигуры или же фигуры с некруглыми основаниями этими формулами пользоваться нельзя.

Источник

Конусы. Усеченные конусы. Объем, площади боковой и полной поверхностей конуса и усеченного конуса

Как выглядит усеченный конус. Конус

Справочник по математикеГеометрия (Стереометрия)Конусы

      Рассмотрим произвольную плоскость α, точку   S,   не лежащую на плоскости α,   и перпендикуляр   SO,   опущенный из точки   S   на плоскость   α   (точка   O   – основание перпендикуляра). Рассмотрим также произвольный круг с центром в точке   O,   лежащий на плоскости   α.

      Определение 1. Конусом называют фигуру, состоящую из всех отрезков, соединяющих точку   S   с точками указанного круга с центром в точке   O,   лежащего на плоскости   α   (рис. 1).

Рис.1

      Определение 2.

Точку   S   называют вершиной конуса.
Отрезок   SO   называют осью конуса.
Расстояние от точки   S   до плоскостиРасстояние от точки   S   до плоскости   α   (длину отрезка   SO)   называют высотой конуса.
Круг с центром в точке   O,   лежащий на плоскости   α,   называют основанием конуса, радиус этого круга называют радиусом основания конуса, а саму плоскость   α   называют плоскостью основания конуса.
Отрезки, соединяющие точку   S   с точками окружности называют образующими конуса.
Совокупность всех образующих конуса составляет боковую поверхность конуса (коническую поверхность).
Полная поверхность конуса состоит из основания конуса и его боковой поверхности.

      Замечание 1. Отрезок   SO   часто называют высотой конуса.

      Замечание 2. Все образующие конуса имеют одинаковую длину. У конуса с высотой   h   и радиусом основания   r   длина образующих равна

Усеченные конусы

      Рассмотрим конус с вершиной   S,   осью   SO,   радиусом основания   r   и высотой   h.   Плоскость   β,   параллельная параллельная плоскости основания конуса и расположенная на расстоянии   h1   от вершины расстоянии   h1   от вершины   S,   пересекает конус по кругу радиуса   r1   с центром в точке   O1   (рис. 2).

Рис.2

      Из подобия прямоугольных треугольников   SOA   и   SO1A1   можно выразить радиус   r1   через известные величины   r, h   и   h1:

      Таким образом, плоскость   β   делит конус на две части: конус с осью   SO1   и радиусом основания   r1,   а также вторую часть, называемую усеченным конусом (рис. 3).

Рис.3

      Усеченный конус ограничен двумя основаниями: кругом с центром в точке   O   радиуса   r   на плоскости   α   и кругом с центром в точке   O1 радиуса   r1   на плоскости   β,   а также боковой поверхностью усеченного конуса, которая представляет собой часть боковой поверхности исходного конуса, заключенную между плоскостями   α   и   β.   Полная поверхность усеченного конуса состоит из двух оснований усеченного конуса и его боковой поверхности. Часть каждой образующей исходного конуса, которая заключена между плоскостями   α   и   β,   называют образующей усеченного конуса. Например, на рисунке 3 одной из образующих усеченного конуса является отрезок   AA1.

      Высотой усеченного конуса называют расстояние между плоскостями расстояние между плоскостями оснований усеченного конуса. У усеченного конуса, изображенного на рисунке 2, высота равна   h – h1.

Объем, площади боковой и полной поверхностей конуса и усеченного конуса

      Введем следующие обозначения

      Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности конуса, а также формулы для вычисления объема, площади боковой и полной поверхности усеченного конуса.

ФигураРисунокФормулы для объема, площади боковой и полной поверхности
КонусSосн = πr2,Sбок= πrl,Sполн = πr2 + πrl,гдеr – радиус основания конуса,l  – длина образующей конуса,h – высота конуса.
Усеченный конусSбок= π (r + r1)l ,гдеh – высота усеченного конуса,r – радиус нижнего основания усеченного конуса,r1 – радиус верхнего основания усеченного конуса,l – длина образующей усеченного конуса.
Конус
Формулы для объема, площади боковой и полной поверхности:Sосн = πr2,Sбок= πrl,Sполн = πr2 + πrl,гдеr – радиус основания конуса,l – длина образующей конуса,h – высота конуса.
Усеченный конус
Формулы для объема, площади боковой и полной поверхности:,Sбок= π (r + r1)l ,гдеh – высота усеченного конуса,r – радиус нижнего основания усеченного конуса,r1 – радиус верхнего основания усеченного конуса,l – длина образующей усеченного конуса.

      Замечание 3. Формула для вычисления объема конуса

может быть получена из формулы объема правильной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      Замечание 4. Формула для вычисления объема усеченного конуса

может быть получена из формулы объема правильной усеченной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной усеченной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Построение развертки конуса

Как выглядит усеченный конус. Конус

Развертка поверхности конуса – это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

  • Прямой круговой конус
  • Наклонный конус
  • Усеченный конус

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Грани S0B0C0, S0C0D0, S0D0E0, S0E0F0, S0F0A0 пирамиды SABCDEF строим аналогично треугольнику S0A0B0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Алгоритм

  1. Строим вспомогательный конус ε, подобный конусу ω, как это показано на рисунке выше. Для удобства построения величину диаметра d выбираем таким образом, чтобы соотношение t=D/d выражалось целым числом. В рассматриваемом примере t=2.
  2. Строим развертку боковой поверхности конуса ε – S0A01020304050A0 и на биссектрисе угла A0S0A0 отмечаем точку O0, выбрав ее расположение произвольно.
  3. Проводим прямые O0A0, O010, O020, O030, O040, O050, O0A0 и на них откладываем отрезки [O0A10]=t×|O0A0|, [O0110]= t×|O010|, [O0210]=t×|O020|, [O0310]=t×|O030|, [O0410]=t×|O040|, [O0510]=t×|O050|, [O0A10]=t×|O0A0| соответственно, где t=D/d. Соединяем точки A10, 110, 210, 310, 410, 510, A10 плавной линией.
  4. Из точек A10, 110, 210, 310, 410, 510, A10 проводим лучи, которые параллельны соответственно прямым A0S0, 10S0, 20S0, 30S0, 40S0, 50S0, A0S0, и на них откладываем отрезки A10B10, 110120, 210220, 310320, 410420, 510520, A10B10, равные l – образующей усеченного конуса. Проводим линию B10120220320420520B10.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.