Как упростить квадратный корень. Формулы корней

Как упростить квадратный корень. Формулы корней

Как упростить квадратный корень. Формулы корней

Внимание! К этой теме имеются дополнительные материалы в Особом разделе 555. Для тех, кто сильно “не очень…”

И для тех, кто “очень даже…”)

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней, каковы свойства корней, и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями – это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да…

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся – с интересом!)

можно познакомиться с функциями и производными.

На первый взгляд может показаться, что процедура разложения квадратного корня на множители сложная и неприступная. Но это не так. В этой статье мы расскажем вам, как подступиться к квадратному корню и множителям, а также легко и просто разложить квадратный корень, воспользовавшись двумя проверенными методами.

Yandex.RTB R-A-339285-1

Разложение корня на множители

Для начала определим цель процедуры разложения квадратного корня на множители. Цель – упростить квадратный корень и записать его в удобном для вычислений виде.

Определение 1

Разложение квадратного корня на множители – нахождение двух или нескольких чисел, которые, при условии перемножения их друг на друга, дадут число равное исходному. Например: 4×4 = 16.

Если вы найдете множители, то сможете легко упростить выражение с квадратным корнем или вовсе его упразднить:

Пример 1

Разделите подкоренное число на 2, если оно четное.

Подкоренное число всегда следует делить на простые числа, поскольку любое значение простого числа можно разложить на простые множители. Если у вас нечетное число, то попробуйте разделить его на 3. Не делится на 3? Делите дальше на 5, 7, 9 и т.д.

Запишите выражение в виде корня произведения двух чисел.

Например, можно упростить таким способом 98: = 98 ÷ 2 = 49 . Из этого следует, что 2 × 49 = 98 , поэтому можно переписать задачу следующим образом: 98 = (2 × 49) .

Продолжите раскладывать числа, пока под корнем не останется произведение двух одинаковых чисел и других чисел.

Возьмем наш пример (2 × 49) :

Поскольку 2 уже и так максимально упрощено, необходимо упростить 49 . Ищем простое число, на которое можно разделить 49 . Очевидно, что ни 3 , ни 5 не подходят. Остается 7: 49 ÷ 7 = 7 , поэтому 7 × 7 = 49 .

Записываем пример в следующем виде: (2 × 49) = (2 × 7 × 7) .

Упростите выражение с квадратным корнем.

Поскольку в скобках у нас произведение 2 и двух одинаковых чисел (7) , то мы можем вынести за знак корня число 7 .

Пример 2

(2 × 7 × 7) = (2) × (7 × 7) = (2) × 7 = 7 (2) .

В тот момент, когда под корнем оказалось два одинаковых числа, останавливайтесь с разложением чисел на множители. Конечно, если вы использовали все возможности по максимуму.

Запомните: существуют корни, которые можно упрощать многократно.

В таком случае, числа, которые мы выносим из-под корня, и числа, которые стоят перед ним, перемножаются.

Пример 3

180 = (2 × 90) 180 = (2 × 2 × 45) 180 = 2 45

но 45 можно разложить на множители и еще раз упростить корень.

180 = 2 (3 × 15) 180 = 2 (3 × 3 × 5) 180 = 2 × 3 5 180 = 6 5

Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.

Если после разложения подкоренного выражения на произведение простых чисел, у вас не получилось получить два одинаковых числа, то такой корень упростить нельзя.

Пример 4

70 = 35 × 2 , поэтому 70 = (35 × 2)

35 = 7 × 5 , поэтому (35 × 2) = (7 × 5 × 2)

Как видим, все три множителя – простые числа, которые нельзя разложить на множители. Среди них нет одинаковых чисел, поэтому не представляется возможным вынести целое число из-под корня. Упростить 70 нельзя.

Полный квадрат

Запомните несколько квадратов простых чисел.

Квадрат числа получается, если умножить его на самого себя, т.е. при возведении в квадрат. Если вы запомните десяток квадратов простых чисел, то это очень упростить вам жизнь в дальнейшем упрощении корней.

Пример 5

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

В случае если под знаком корня квадратного корня находится полный квадрат, то стоит убрать знак корня и записать квадратный корень данного полного квадрата.

Сложно? Нет:

Пример 6

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Попробуйте разложить число под знаком корня на произведения полного квадрата и другого числа.

Если вы видите, что подкоренное выражение раскладывается на произведение полного квадрата и какого-либо числа, то, запомнив несколько примеров, вы существенно сэкономите время и нервы:

Пример 7

50 = (25 × 2) = 5 2 . Если подкоренное число оканчивается на 25, 50 или 75, вы всегда можете разложить его на произведение 25 и какого-то числа.

1700 = (100 × 17) = 10 17 . Если подкоренное число оканчивается на 00, вы всегда можете разложить его на произведение 100 и какого-то числа.

72 = (9 × 8) = 3 8 . Если сумма цифр подкоренного числа равна 9, вы всегда можете разложить его на произведение 9 и какого-то числа.

Попробуйте разложить подкоренное число на произведение нескольких полных квадратов: вынесите их из-под знака корня и перемножьте.

Пример 8

72 = (9 × 8) 72 = (9 × 4 × 2) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Цель упрощения квадратного корня – это переписать его в такой форме, которую проще использовать в вычислениях. Разложение числа на множители – это нахождение двух или нескольких чисел, которые при перемножении дадут исходное число, например, 3 х 3 = 9. Найдя множители, вы сможете упростить квадратный корень или вообще избавиться от него. Например, √9 = √(3×3) = 3.

Если подкоренное число четное, разделите его на 2. Если подкоренное число нечетное, попробуйте разделить его на 3 (если число на 3 не делится, делите его на 5, 7 и так далее по списку простых чисел).

Делите подкоренное число исключительно на простые числа, так как любое число можно разложить на простые множители.

Например, вам не нужно делить подкоренное число на 4, так как 4 делится на 2, а вы уже разделили подкоренное число на 2.

Перепишите задачу как корень из произведения двух чисел. Например, упростим √98: 98 ÷ 2 = 49, поэтому 98 = 2 x 49. Перепишите задачу так: √98 = √(2 x 49).

  • Продолжите разложение чисел до тех пор, пока под корнем не останется произведение двух одинаковых чисел и других чисел. Это имеет смысл, если задуматься о смысле квадратного корня: √(2 х 2) равен числу, которое, будучи умноженным само на себя, будет равно 2 х 2. Очевидно, что это число 2! Повторите описанные выше действия для нашего примера: √(2 х 49).

    • 2 уже максимально упрощено, так как это простое число (см. список простых чисел выше). Поэтому разложите на множители число 49.
    • 49 на 2, 3, 5 не делится. Поэтому переходите к следующему простому числу – 7.
    • 49 ÷ 7 = 7, поэтому 49 = 7 x 7.
    • Перепишите задачу так: √(2 x 49) = √(2 x 7 x 7).
  • Упростите квадратный корень. Так как под корнем находится произведение 2 и двух одинаковых чисел (7), вы можете вынести такое число за знак корня. В нашем примере: √(2 x 7 x 7) = √(2)√(7 x 7) = √(2) x 7 = 7√(2).

    • Как только под корнем вы получили два одинаковых числа, вы можете остановиться с разложением чисел на множители (если их все еще можно разложить). Например, √(16) = √(4 х 4) = 4. Если вы продолжите разложение чисел на множители, вы получите тот же ответ, но проделаете больше вычислений: √(16) = √(4 х 4) = √(2 х 2 х 2 х 2) = √(2 х 2) √(2 х 2) = 2 х 2 = 4.
  • Некоторые корни можно упрощать многократно. В этом случае числа, выносимые из-под знака корня, и числа, стоящие перед корнем, перемножаются. Например:

    • √180 = √(2 x 90)
    • √180 = √(2 x 2 x 45)
    • √180 = 2√45, но 45 можно разложить на множители и еще раз упростить корень.
    • √180 = 2√(3 x 15)
    • √180 = 2√(3 x 3 x 5)
    • √180 = (2)(3√5)
    • √180 = 6√5
  • Если вы не можете получить два одинаковых числа под знаком корня, то такой корень упростить нельзя. Если вы разложили подкоренное выражение на произведение простых множителей, и среди них нет двух одинаковых чисел, то такой корень упростить нельзя. Например, попробуем упростить √70:

    • 70 = 35 x 2, поэтому √70 = √(35 x 2)
    • 35 = 7 x 5, поэтому √(35 x 2) = √(7 x 5 x 2)
    • Все три множителя являются простыми, поэтому их больше нельзя разложить на множители. Все три множителя разные, поэтому вы не сможете вынести целое число из-под знака корня. Следовательно, √70 упростить нельзя.
  • Вычислить квадратный корень из числа: примеры, расчеты, калькулятор

    Как упростить квадратный корень. Формулы корней

    Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

    • найти квадратные или кубические корни из заданных чисел;
    • выполнить математическое действие с дробными степенями.

    Как вычислять квадратный корень вручную —методом подбора находить подходящие значения. Рассмотрим, как это делать.

    Что такое квадратный корень

    Корень n степени натурального числа a — число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

    Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

    Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

    Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

    Проводим расчеты вручную

    Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

    1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

    Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

    Например:

    25, 36, 49 — квадратные числа, поскольку:

    Получается, что квадратные множители — множители, которые являются квадратными числами.

    Возьмем 784 и извлечем из него корень.

    Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.
    Применим правилоИзвлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.Ответ. 

    2.Неделимое. Его нельзя разложить на квадратные множители.

    Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

    Раскладываем число 252 на квадратный и обычный множитель.
    Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки.Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.Значитмежду 2 и 4.
    Оцениваем значениеВероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76~7.
    Вычисляем корень

    Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

    При делении в столбик получается максимально точный ответ при извлечении корня.

    Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
    Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:— целую часть справа налево;— число после запятой слева направо.Пример: 3459842,825694 → 3 45 98 42, 82 56 94795,28 → 7 95, 28Допускается, что вначале остается непарное число.
    Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 = 
    Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.А верхнее число справа удвойте и запишите справа выражение 4_х_=_.Примечание: числа должны быть одинаковыми.
    Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
    Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.Снесите следующую пару чисел и запишите возле полученной разницы слева.
    Вычтите полученное справа произведение из числа слева.Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.
    Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.
    Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение  прочерками, подбираем множители для него и так далее.

    Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

    Алгоритм действий

    1. Введите желаемое количество знаков после запятой.

    2. Укажите степень корня (если он больше 2).

    3. Введите число, из которого планируете извлечь корень.

    4. Нажмите кнопку «Решить».

    Вычисление самых сложных математических действий с онлайн калькулятором станет простым! Экономьте время и проводите расчеты с CALCON.RU.

    Квадратный корень

    Как упростить квадратный корень. Формулы корней
    Предварительные навыки

    • Степень с натуральным показателем
    • Периметр, площадь и объём

    Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

    Найдём площадь квадрата, длина стороны которого 3 см

    S = 32 = 9 см2

    Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

    Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

    Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

    Введём для работы с корнями новые обозначения.

    Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .

    Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

    Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

    Получили выражение, которое читается так: «квадратный корень из числа 9». С этого момента возникает новая задача по поиску самогó корня.

    Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

    Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

    Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

    Получается, что выражение  имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

    Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

    Например, извлечём квадратный корень из числа 4

    Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

    Поэтому ответ к выражению вида  записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

    Запишем ответ к выражению  с плюсом и минусом:

    Определения

    Дадим определение квадратному корню.

    Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.

    То есть число b должно быть таким, чтобы выполнялось равенство b2 = a. Число b (оно же корень) обозначается через радикал  так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение 

    Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

    42 = 16

    Корень 4 можно обозначить через радикал  так, что .

    Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

    (−4)2 = 16

    Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

    Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство b2 = a.

    В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

    В разговорном языке можно использовать сокращение. К примеру, выражение  полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

    Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

    Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

    Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

    Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

    Это по причине того, что единица во второй степени равна единице:

    12 = 1

    и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

    Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 02 = 0.

    Выражение вида  смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

    Если выражение вида  возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a

    Например, выражение  равно 4

    Это потому что выражение  равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

    Еще примеры:

    Корень из квадрата числá равен модулю этого числá:

    Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

    Если во вторую степень возвóдится отрицательное число, ответ опять же будет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

    Действительно, если не пользуясь правилом , вычислять выражение  обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

    Не следует путать правило  с правилом . Правило  верно при любом a, тогда как правило  верно в том случае, если выражение  имеет смысл.

    В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

    Примеры: √4, √9, √16.

    Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

    Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

    49 < 64

    Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,

    √49 < √64

    Отсюда:

    7 < 8

    Примеры извлечения квадратных корней

    Рассмотрим несколько простых примеров на извлечение квадратных корней.

    Пример 1. Извлечь квадратный корень √36

    Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 62 = 36

    √36 = 6

    Пример 2. Извлечь квадратный корень √49

    Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 72 = 49

    √49 = 7

    В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

    7 × 7 = 49

    Но 7 × 7 это 72

    72 = 49

    Отсюда, √49 = 7.

    Пример 3. Извлечь квадратный корень √100

    Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100

    √100 = 10

    Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.

    Пример 3. Извлечь квадратный корень √256

    Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

    Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

    Видим, что это число 16. Значит √256 = 16.

    Пример 4. Найти значение выражения 2√16

    В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2

    Пример 7. Решить уравнение 

    В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

    Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.

    Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .

    Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

    Из определения мы знаем, что квадратный корень  равен числу b, при котором выполняется равенство b2 = a.

    Применим равенство b2 = a к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x

    В выражении 42 = x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим x = 16. В результате приходим к тому, что нашлось значение переменной x.

    Пример 8. Решить уравнение 

    Перенесем −8 в правую часть, изменив знак:

    Возведем правую часть во вторую степень и приравняем её к переменной x

    Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим x = 64. Значит корень уравнения  равен 64

    Пример 9. Решить уравнение 

    Воспользуемся определением квадратного корня:

    Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x

    В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:

    Корень уравнения  равен . Выполним проверку, подставив его в исходное уравнение:

    Пример 10. Найти значение выражения 

    В этом выражении число 2 умножается на квадратный корень из числа 49.

    Сначала нужно извлечь квадратный корень и перемножить его с числом 2

    Приближённое значение квадратного корня

    Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

    Например, извлечь квадратный корень  можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 82 = 64. То есть

    А извлечь квадратный корень  нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

    Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

    Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

    Найдём значение корня  приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня  будет представлять собой десятичную дробь, у которой после запятой одна цифра.

    Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

    √1 = 1

    Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

    √4 = 2

    √1 меньше, чем √4

    √1

    Квадратный корень. Подробная теория с примерами

    Как упростить квадратный корень. Формулы корней

    Важное замечание!
    Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

    Для начала почитай комментарии внизу этой статьи, чтобы понять насколько крутой материал ты сейчас читаешь! )

    А теперь давай попробуем разобраться, что это за понятие такое “квадратный корень”.

    К примеру, перед нами уравнение  .

    Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом  ?

    Вспомнив таблицу умножения, ты легко дашь ответ:   и   (ведь при перемножении двух отрицательных чисел получается число положительное)!

    Для упрощения математики ввели специальное понятие квадратного корня и присвоили ему специальный символ  

    Давай разберемся с корнем до конца…

    СОДЕРЖАНИЕ

    Введение понятия арифметического квадратного корня​  Свойства арифметического квадратного корня Извлечение корней из больших чисел Как тебе квадратный корень? Все понятно?

    Введение понятия арифметического квадратного корня​

    Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .  .

    А почему же число   должно быть обязательно неотрицательным?

    Например, чему равен  ?

    Так-так, попробуем подобрать. Может, три? Проверим:  , а не  .

    Может,  ? Опять же, проверяем:  .

    Ну что же, не подбирается?

    Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

    Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

    Однако ты наверняка уже заметил, что в определении сказано, что «квадратным корнем из числа   называется такое неотрицательное число, квадрат которого равен  ».

    А в самом начале мы разбирали пример  , подбирали числа, которые можно возвести в квадрат и получить при этом  , ответом были   и  , а тут говорится про какое-то «неотрицательное число»!

    Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа.

    К примеру,   не равносильно выражению  .

    Из   следует, что

     , то есть   или  ;   (не помнишь почему так? Почитай тему “Модуль числа”!)

    А из   следует, что  .

    Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

    В наше квадратное уравнение подходит как  , так и  .

    Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

    Итак, вкратце на примере, нужно ли ставить “плюс-минус” (этот наглядный пример привёл наш читатель Игорь, спасибо ему за это):

    Пусть есть две ситуации:

    1)  

    2)  

    В первом случае у нас квадратное уравнение и его решением будет   (уже видно отличие от второго случая) и далее получаем два корня  

    Во втором случае у нас НЕТ квадратного уравнения, просто х равен корню из числа и в этом случае ответ всегда “одно неотрицательное число”, то есть 8.

    А теперь попробуй решить такое уравнение  .

    Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

    Начнем с самого начала – с нуля:   – не подходит.

    Двигаемся дальше  ;   – меньше трех, тоже отметаем.

    А что если  ? Проверим:   – тоже не подходит, т.к. это больше трех.

    С отрицательными числами получится такая же история.

    И что же теперь делать? Неужели перебор нам ничего не дал?

    Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между   и  , а также между   и  .

    Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

    И что дальше?

    Давай построим график функции   и отметим на нем решения.

    Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из  , делов-то!

    Ой-ой-ой, выходит, что   Такое число никогда не кончается.

    Как же такое запомнить, ведь на экзамене калькулятора не будет!?

    Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение.   и   уже сами по себе ответы.

    Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

    Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной   км, сколько км тебе предстоит пройти?

    Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора:  .

    Таким образом,  .

    Так чему же здесь равно искомое расстояние?

    Очевидно, что расстояние не может быть отрицательным, получаем, что  . Корень из двух приблизительно равен  , но, как мы заметили раньше,   -уже является полноценным ответом.

    Извлечение корней

    Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать.

    Для этого необходимо знать, по меньшей мере, квадраты чисел от   до  , а также уметь их распознавать.

    То есть, тебе необходимо знать, что   в квадрате равно  , а также, наоборот, что   – это   в квадрате.

    Первое время в извлечении корня тебе поможет эта таблица.

    Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.

    Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

    Ответы:

    Ну как, получилось? Теперь давай посмотрим такие примеры:

    Ответы:

     Свойства арифметического квадратного корня

    Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

    • умножение;
    • деление;
    • возведение в степень.

    Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

    СвойствоПример
    Корень произведения равен произведению корней:
    Корень из дроби – это корень из числителя и корень из знаменателя: , если  
    Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение: , при  

    Умножение корней

    Взглянул еще раз на табличку… И, поехали!

    Начнем с простенького:

    Минуууточку.   это  , а это значит, что мы можем записать вот так:

    Усвоил? Вот тебе следующий:

    Корни из получившихся чисел ровно не извлекаются? Не беда – вот тебе такие примеры:

    А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

    Деление корней

    С умножением корней разобрались, теперь приступим к свойству деления.

    Напомню, что формула в общем виде выглядит так:

     , если  .

    А значит это, что корень из частного равен частному корней.

    Ну что, давай разбираться на примерах:

    Вот и вся наука. А вот такой пример:

    Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

    А что, если попадется такое выражение:

    Надо просто применить формулу в обратном направлении:

    А вот такой примерчик:

    Еще ты можешь встретить такое выражение:

    Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

    Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

    Возведение в степень

    А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа   – это число, квадратный корень которого равен  .

    Так вот, если мы возводим число, квадратный корень которого равен  , в квадрат, то что получаем?

    Ну, конечно,  !

    Рассмотрим на примерах:

    Все просто, правда? А если корень будет в другой степени? Ничего страшного!

    Придерживайся той же логики и помни свойства и возможные действия со степенями.

    Забыл?

    Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

    Вот, к примеру, такое выражение:

    В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

    С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

    Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

    Ну как, все понятно? Тогда реши самостоятельно примеры:

    А вот и ответы:

    Внесение под знак корня

    Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

    Это совсем легко! 

    Допустим, у нас записано число  

    Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка – корень квадратный из  !

    Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

     
    Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

    Реши самостоятельно вот этот пример –  
    Справился? Давай смотреть, что у тебя должно получиться:

    Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному – рассмотрим, как сравнивать числа, содержащие квадратный корень!

    Сравнение корней

    Зачем нам учиться сравнивать числа, содержащие квадратный корень?

    Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

    Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

    Например, определи, что больше:   или  ?

    Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

    Тогда вперед:

    Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

    Т.е. если  , значит,  .

    Отсюда твердо делаем вывод, что  . И никто не убедит нас в обратном!

    Извлечение корней из больших чисел

    До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

    Можно было пойти по иному пути и разложить на другие множители:

    Что дальше? А дальше раскладываем на множители до самого конца:

    Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

    Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

    Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

    А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

    Разве это конец? Не останавливаемся на полпути!

    На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

    Вот и все, не так все и страшно, правда?

    Получилось  ? Молодец, все верно!

    А теперь попробуй вот такой пример решить:

    А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

    Ну что, начнем раскладывать   на множители? Сразу заметим, что можно поделить число на   (вспоминаем признаки делимости):

    А теперь, попробуй сам (опять же, без калькулятора!):

    Ну что, получилось  ? Молодец, все верно!

    Подведем итоги

    1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .
       .
    2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

    3. Свойства арифметического корня:
      СвойствоПример
      Корень произведения равен произведению корней , если  
      Корень из дроби – это корень из числителя и корень из знаменателя. , если  
      Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при  
    4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

    Как тебе квадратный корень? Все понятно?

    Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

    Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

    Узнал ты что-то новое или все было и так ясно.

    Как быстро извлекать квадратные корни

    Как упростить квадратный корень. Формулы корней

    14 декабря 2012

    Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

    1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
    2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

    Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

    Итак, алгоритм:

    1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
    2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
    3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

    Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

    Ограничение корней

    В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

    102 = 100;
    202 = 400;
    302 = 900;
    402 = 1600;…

    902 = 8100;

    1002 = 10 000.

    Получим ряд чисел:

    100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

    Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

    [Подпись к рисунку]То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:
    [Подпись к рисунку]

    Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

    Отсев заведомо лишних чисел

    Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

    Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

    Последняя цифра квадрата зависит только от последней цифры исходного числа.

    Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

    Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

    Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

    22 = 4;
    82 = 64 → 4.

    Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

    [Подпись к рисунку]Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:
    [Подпись к рисунку]

    Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

    Финальные вычисления

    Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

    Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

    522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;
    582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

    Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный 🙂

    Примеры вычисления корней

    Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Для начала выясним, между какими числами лежит число 576:

    400 < 576 < 900
    202 < 576 < 302

    Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

    24; 26.

    Осталось возвести каждое число в квадрат и сравнить с исходным:

    242 = (20 + 4)2 = 576

    Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

    900 < 1369 < 1600;
    302 < 1369 < 402;

    Смотрим на последнюю цифру:

    1369 → 9;
    33; 37.

    Возводим в квадрат:

    332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
    372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

    Вот и ответ: 37.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    2500 < 2704 < 3600;
    502 < 2704 < 602;

    Смотрим на последнюю цифру:

    2704 → 4;
    52; 58.

    Возводим в квадрат:

    522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

    Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    3600 < 4225 < 4900;
    602 < 4225 < 702;

    Смотрим на последнюю цифру:

    4225 → 5;
    65.

    Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

    652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

    Все правильно. Записываем ответ.

    Заключение

    Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

    Увы, не лучше. Давайте разберемся в причинах. Их две:

    • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
    • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

    В общем, учитесь считать. И все будет хорошо. Удачи!

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.