Активные силы и реакции связей. Техническая механика

Связи и их реакции

Активные силы и реакции связей. Техническая механика

Тело, перемещениюкоторого в пространстве препятствуеткакие-нибудь другие тела, скрепленныеили соприкасающиеся с данным, называетсянесвободным.Все то, что ограничивает перемещениеданного тела в пространстве, называетсясвязями.

Пример. Груз виситна веревке, ящик стоит на полу и т.д.

Сила, с которойданная связь действует на тело, препятствуятем или иным его перемещениям, называетсясилой реакции(противодействия) связиили простореакцией связи.

Силы, приложенныек телу, но не являющиеся реакциями,называются активными.

Направление силыреакции связи противоположно той, кудасвязь не дает перемещаться телу.

Направления реакций некоторых основных видов связи

1. Гладкая поверхность

РеакциясвязиNгладкой поверхности или опоры направленапо нормали к поверхностям соприкасающихсятел в точке касания и приложена в этойточке.

а) б) в)

Рис. 1.5

Если одна изсоприкасающихся поверхностей являетсяточкой, то реакция направлена по нормалик другой поверхности (рис. 1.5).

2. Нить, стержень.

РеакцияТ натянутой нити и нагруженного стержняSнаправлена вдоль этих связей и приложенав точке контакта (рис. 1.6).

а) б)

Рис. 1.6

3.Цилиндрический шарнир (подшипник,петля).

РеакцияRцилиндрического шарнира лежит вплоскости, перпендикулярной оси шарнира,и может иметь любое направление в этойплоскости. Для определения Rее раскладывают на два взаимноперпендикулярныхнаправления: Rxи Ry(рис. 1.7).

Рис. 1.7

4.Подвижная шарнирная опора.

РеакциясвязиRнаправлена перпендикулярно плоскостивозможного перемещения шарнира (рис.1.8).

5. Шаровый шарнир и подпятник (рис.1.9, рис. 1.10).

а) б)

Рис. 1.10

Реакцияшарового шарнира и подпятника можетиметь любое направление в пространстве.

Аксиома связей. Всякоенесвободное тело можно рассматриватькак свободное, если отбросить связи изаменить их действие реакциями этихсвязей (рис. 1.11).

Сложение сил

Геометрическийспособ сложения сил

Величина, равная геометрическойсумме сил какой-либо системы называетсяглавным вектором этой системы сил.

Пустьна твердое тело действует плоскаясистема сил (F1,F2,F3,…, Fn)(рис. 1.12).

Изпроизвольно выбранной точки О откладываетсявекторF1,из его конца откладывается вектор F2и т.д. Вектор R,замыкающий силовой многоугольник,является результирующим:

Сложение двух сил

Пусть на телодействуют две силы, лежащие в однойплоскости (рис. 1.13).

.

Результирующая сила определяетсяпо правилу параллелограмма, модуль силыопределяется по теореме косинусов илисинусов:

; .

Сложение трехсил не лежащих в одной плоскости

Рассмотримтри силы,,не лежащие в одной плоскости (рис. 1.14).Результирующая силаравна:

.

Направление силыопределим по направляющим косинусам:

;;.

Разложение сил

Разложение силпо двум заданным направлениям

Пустьнадо силуFразложить по направлениям ABи AD(рис. 1.15).

.

Задача сводитсяк построению параллелограмма, у которогостороны расположены по направлениямABи ADи данная сила Fявляется диагональю. Тогда стороныпараллелограмма будут искомыми силами.

Разложение силпо трем заданным направлениям.

Пусть направления силы не лежат водной плоскости. Тогда задача сводитсяк построению параллелепипеда, у которогодиагональю является данная сила, а ребрапараллельны заданным направлениям(рис. 1.16).

.

Вопросы длясамоконтроля

  1. Что изучает статика?

  2. Что такое абсолютно твердое тело?

  3. Основные виды связей и их реакции?

  4. Геометрическое сложение сил?

Задачи, рекомендуемыедля самостоятельного решения: 1.1 – 1.6[2]

Литература: [1],[3],[4].

Лекция 2.

Действия надсилами. Система сходящихся сил

Проекция силына ось и на плоскость

Проекциясилы на ось.Пусть сила Fобразует с осью OXугол (рис. 2.1), тогда проекция этой силы на осьбудет:

Fx= Fcos.

Проекция силы на ось есть величинаскалярная.

Проекциясилы на плоскость.Проекцией силы Fна плоскость OXYназывается вектор Fxy= OB1,заключенный между проекциями начала иконца силы Fна эту плоскость (рис. 2.2.)

Проекция силы на плоскость естьвеличина векторная, так как она кромечисленного значения характеризуетсянаправлением на плоскости. По модулюFxy= Fcos,где - угол между направлением силы Fи ее проекцией Fxy.

Аналитическийспособ задания сил.Для аналитического способа заданиясилы необходимо выбрать систему координатOXYZи спроектировать силу на оси координат(рис. 2.3).

Направляющиекосинусы определяются по формулам:

;; .

.

Для плоской системысил:

; ; ; .

Читать книгу «Техническая механика. Шпаргалка» онлайн— Аурика Луковкина — Страница 1 — MyBook

Активные силы и реакции связей. Техническая механика

Теоретическая механика – это наука о механическом движении твердых материальных тел и их взаимодействии. Механическое движение понимается как перемещение тел в пространстве и во времени по отношению к другим телам, в частности, к Земле.

Статика изучает условия равновесия тел под действием сил.

Кинематика рассматривает движение тел как перемещение в пространстве; характеристики тел и причины, вызывающие движение, не рассматриваются.

Динамика изучает движение тел под действием сил.

Сила – это мера механического взаимодействия материальных тел между собой. Взаимодействие характеризуется величиной и направлением, т. е. сила – это величина векторная, характеризующаяся точкой приложения, направлением (линией действия), величиной (модулем).

Силы, действующие на тело (или систему сил), делят на внешние и внутренние. Внешние силы бывают активные и реактивные. Активные силы вызывают перемещение тела, реактивные стремятся противодействовать перемещению тела под действием внешних сил.

Системой сил называют совокупность сил, действующих на тело.

Эквивалентная система сил – система сил, действующая так же, как заданная.

Уравновешенной (эквивалентной нулю) системой сил называется такая система, которая, будучи приложенной к телу, не изменяет его состояния.

Систему сил, действующих на тело, можно заменить одной равнодействующей, действующей так, как система сил.

Все теоремы и уравнения статики выводятся из нескольких исходных положений, называемых аксиомами.

Первая аксиома. Под действием уравновешивающей системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).

Вторая аксиома. Две силы, равные по модулю и направленные по одной прямой в разные стороны, уравновешиваются.

Третья аксиома. Не нарушая механического состояния тела, можно добавить или убрать уравновешивающую систему сил (принцип отбрасывания системы сил, эквивалентной нулю).

Четвертая аксиома (правило параллелограмма сил). Равнодействующая двух сил, приложенных к одной точке, приложена к той же точке и является диагональю параллелограмма, построенного на этих силах как на сторонах.

Пятая аксиома. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Следствие из второй и третьей аксиом. Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия.

2. Связи и реакции связей

Все тела делятся на свободные и связанные.

Свободные тела – это тела, перемещение которых не ограничено.

Связанные тела – это тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями.

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей. Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).

Связи делятся на несколько типов.

Связь – гладкая опора (без трения) – реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре.

Гибкая связь (нить, веревка, трос, цепь) – груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.

Жесткий стержень – стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент.

Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, так как не допускается только перемещение поперек опорной поверхности.

Неподвижный шарнир. Точка крепления перемещаться не может.

Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее изображают в виде двух составляющих: горизонтальной и вертикальной (Rx, Ry).

Защемление, или «заделка». Любые перемещения точки крепления невозможны.

Под действием внешних сил в опоре возникают реактивная сила и реактивный момент Мz, препятствующий повороту.

Реактивная сила представляется в виде двух составляющих вдоль осей координат:

R = Rx+ Ry.

3. Определение равнодействующей геометрическим способом

Система сил, линии действия которых пересекаются в одной точке, называется сходящейся.

Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3;…; Fn), где n – число сил, входящих в систему.

В соответствии со следствиями из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными к одной точке.

Используя свойство векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил.

При графическом способе определения равнодействующей векторы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.

Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называется геометрическим.

Многоугольник сил строится в следующем порядке.

1. Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора совпал с началом последующего.

2. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

3. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Геометрическим способом пользуются, если в системе три силы. При решении задач на равновесие тело считается абсолютно твердым (отвердевшим).

Задачи решаются в следующем порядке.

1. Определить возможное направление реакций связей.

2. Вычертить многоугольник сил системы, начиная с известных сил, в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура).

3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.

4. Для уточнения определить величины векторов (сторон многоугольника) с помощью геометрических зависимостей.

Техническая механика

Активные силы и реакции связей. Техническая механика


Как уже упоминалось в предыдущих статьях, статика изучает условия, при которых тела и материальные точки находятся в состоянии равновесия.

Казалось бы, благодаря аксиомам статики, описывающим основные свойства силового взаимодействия между телами, решение задач равновесия тел не должно представлять трудностей – неизвестные силы можно найти, зная, что они должны уравновешиваться известными силами, отсюда и ключ к решению.
Тем не менее, основная сложность при расчетах заключается в том, что силы – векторные величины, и для решения задач необходимо знать не только их скалярные размерности (модули), но и направление в пространстве, а также точки приложения. В результате получается, что каждая неизвестная сила содержит три вопроса: куда она направлена, где приложена, и какова ее величина?

Исключить некоторые неизвестные составляющие сил помогает анализ связей между телами. Как мы уже знаем, все тела и материальные точки подразделяются на свободные и связанные (несвободные).

В статике чаще всего приходится решать задачи, в которых рассматривается условие равновесия связанных тел, т. е. имеющих некоторые (или полные) ограничения на перемещение в пространстве относительно других тел.

Эти ограничения называются связями.

Примерами связей, ограничивающих перемещение тела, может послужить поверхность или какая-либо опора, на которой лежит тело, жесткая заделка части тела в массив, исключающая любое его перемещение, а также гибкие и шарнирные связи, частично ограничивающие возможность тела перемещаться в пространстве.
Анализ таких связей позволяет понять, какие силовые факторы возникают в них при противодействии перемещению связанного тела. Эти силовые факторы называют силами реакции или реакциями связей (обычно их называют просто реакциями).
Силы, которыми тело воздействует (давит) на связи называют силами давления.
Следует отметить, что силы реакций и давлений приложены к различным телам, поэтому не представляют собой систему сил.

Силы, действующие на любое тело можно разделить на активные и реактивные.
Активные силы стремятся перемещать тело, к которому они приложены, в пространстве, а реактивные силы – препятствуют этому перемещению.

Силы реакции связей относятся к реактивным силам.
Принципиальное отличие активных сил от реактивных заключается в том, что величина реактивных сил зависит от величины активных сил, но не наоборот.

Активные силы часто называют нагрузками.

При решении большинства задач статики несвободное тело условно изображают как свободное с помощью так называемого принципа освобождаемости, который формулируется следующим образом: всякое несвободное (связанное) тело можно рассматривать как свободное, если отбросить связи и заменить их реакциями.

***



Рассмотрим наиболее часто встречающиеся связи, а также возникающие в них реакции при приложении нагрузок.

Идеально гладкая плоскость

Реакция идеально гладкой плоскости направлена перпендикулярно опорной плоскости в сторону тела, так как такая связь не дает телу перемещаться лишь в одном направлении – в сторону опорной плоскости, т. е. перпендикулярно ей (см. рисунок 1,а).

Если же тело находится на наклонной плоскости, то силу его тяжести G можно разложить на две составляющие, из которых одна будет направлена параллельно плоскости (Xa), другая – перпендикулярно ей (Ya). При этом первая сила будет стремиться передвигать тело по плоскости в сторону уклона, а вторая – прижимать его к плоскости (см. рисунок 1,б).

Реакция наклонной плоскости будет равна по модулю составляющей, перпендикулярной плоскости и направлена в сторону, противоположную этой составляющей, уравновешивая ее. Если тело касается плоскости одной точкой (например, шар или угол), то реакция будет приложена к этой точке тела.

В других случаях, когда тело касается плоскости некоторой поверхностью, имеет место взаимодействие посредством нагрузки, распределенной по этой поверхности (распределенной нагрузки).

Идеально гладкая поверхность

Идеально гладкая поверхность (отличается от плоскости криволинейностью) реагирует перпендикулярно касательной плоскости, т. е. по нормали к опорной поверхности в сторону тела, так как нормаль – единственное направление перемещения тела, которое не допускает данная связь (см. рисунок 1,в).

Закрепленная точка или ребро угла

В случае, если перемещение тела ограничивается закрепленной точкой или ребром угла, реакция связи направлена по нормали к поверхности идеально гладкого тела в сторону тела, так как нормаль к поверхности тела – единственное направление, движение в котором ограничено этим видом связи (см. рисунок 1,г).

Гибкая связь

Реакция гибкой связи (гибкая нить) не дает телу удаляться от точки подвеса и поэтому направлена вдоль связи от тела к точке подвеса, т. е. известны точка приложения реакции гибкой связи и ее направление. На рисунке 2 изображена гибкая связь, служащая связующим звеном между двумя стержнями и телом.

В конструкциях широкое распространение имеют связи, которые называются шарнирами. Шарнир представляет собой подвижное соединение двух тел (деталей), допускающее только вращение вокруг общей точки (шаровой шарнир) или вокруг общей оси (цилиндрический шарнир). Рассмотрим, какие реакции возникают при связывании тела с помощью шарниров.

Идеально гладкий цилиндрический шарнир

При связывании тела цилиндрическим шарниром возможно его перемещение вдоль оси шарнира и вращение относительно этой оси.

Реакция цилиндрического шарнира расположена в плоскости, перпендикулярной его оси и пересекает эту ось. Направление вектора реакции шарнира на этой плоскости зависит от направления вектора нагрузки.

Примером цилиндрического шарнира может послужить обыкновенный подшипник качения.

Идеально гладкий шаровой шарнир

В этом случае заранее известно лишь то, что реакция проходит через центр шарнира, так как тело, связанное шаровым шарниром, может поворачиваться в любом направлении относительно оси шарнира, но не может совершать никаких линейных перемещений в пространстве, т. е. удаляться от центра шарнира или приближаться к нему.

Идеально гладкий подпятник

Подпятник можно рассматривать, как сочетание цилиндрического шарнира и опорной плоскости, поэтому реакция подпятника считается состоящей из двух составляющих: Xa и Ya.

При этом одна из реакций будет направлена вдоль нормали к опоре в сторону тела (как у опорной плоскости), другая – перпендикулярно оси подпятника (как у цилиндрического шарнира).

Полная реакция подпятника будет равна векторной сумме этих составляющих: Ra = Xa +Ya.

Стержень, закрепленный шарнирно

Стержень, закрепленный двумя концами в идеально гладких шарнирах и нагруженный концами (рис. 2), реагирует только по линии, соединяющей оси шарниров, т. е. вдоль своей оси (согласно III аксиоме статики).

При этом реакция стержня может быть направлена и к центру шарнира (точке крепления), и от него (в зависимости от направления нагрузки), поскольку этот вид связи удерживает тело на фиксированном расстоянии, не позволяя ему удаляться или приближаться.

Этим стержень принципиально отличается от гибкой связи, у которой реакция всегда направлена от точки крепления в сторону связи (гибкая связь удерживает тело только от удаления, не запрещая ему приближаться к точке крепления).

Жесткая заделка

Этот вид связи полностью лишает тело возможности перемещаться в любом направлении и вращаться относительно какой-либо оси или точки.
При жесткой заделке тела (рис. 3) в опоре возникает не только реактивная сила RA, но и реактивный момент МA.

Жесткая заделка является “темной лошадкой” при вычислениях, поскольку изначально ни направление реакций, ни их величина неизвестны, особенно если нагрузка представлена системой сил.

Тем не менее, используя разложение активных сил на составляющие, последовательно можно определить и реактивную силу RA, и реактивный момент MA, действующие в жесткой заделке.

В случае, если тело связано не только жесткой заделкой, но и другим видом связи, задача становится нерешимой обычными методами статики, поскольку неизвестных реакций больше, чем возможное количество уравнений равновесия.

Пример решения задачи по определению реакций жесткой заделки приведен на этой странице.

***

Понятие бруса и балки в технической механике

В статике нередко приходится решать задачи на условие равновесия элементов конструкций, называемых брусьями.
Брусом принято считать твердое тело, у которого длина значительное больше поперечных размеров.

Осью бруса считается геометрическое место (множество) центров тяжести всех поперечных сечений этого бруса.

Брус с прямолинейной осью, положенный на опоры и изгибаемый приложенными к нему нагрузками, называют балкой.

***

Распределенные нагрузки



Силы в теоретической механике

Активные силы и реакции связей. Техническая механика

Дано определение силы, действующей на материальную точку. Показано, что в теоретической механике, в задачах на определение движения твердых тел, силы являются скользящими векторами и системы сил можно преобразовывать в более простые эквивалентные системы. Показано, что получить эквивалентную систему, можно решая задачу статики, в которой к старой системе добавляется новая система сил.

В инерциальной системе отсчета, не взаимодействующие между собой, материальные точки движутся с постоянными скоростями. Пусть – радиус-вектор одной из свободных точек. Тогда вектор ее скорости есть постоянный вектор, не зависящий от времени t.

Следовательно его проекции на оси прямоугольной системы координат являются постоянными, не зависящими от времени величинами: . Если мы определим вектор ускорения точки:
,
то он равен нулю: .

Это означает, что его проекции на оси координат равны нулю: .

Как показывает опыт, можно создать условия, при которых материальные точки будут взаимодействовать друг с другом. Тогда их скорости не будут постоянными – движение при взаимодействии является ускоренным.

У рассматриваемой нами точки, вектор скорости будет зависеть от времени, а вектор ускорения будет отличен от нуля. Тогда удобно ввести новую векторную физическую величину, пропорциональную вектору ускорения точки. Такую величину называют силой.

Она определяется по формуле:
,
где m – еще одна физическая величина, называемая массой точки.

Сила , действующая на материальную точку с радиус-вектором со стороны других точек – это мера воздействия других точек на рассматриваемую точку, в результате которой она получает ускорение относительно инерциальной системы отсчета. Величина силы определяется по формуле:
(1)   ,
где m – масса точки – величина, зависящая от свойств самой точки.

Формула (1) называется вторым законом Ньютона. По существу, она является определением новой физической величины – силы.

Такое определение согласуется с нашим жизненным опытом, согласно которому, чем больше мы прилагаем усилий, тем быстрее разгоняется груз (например, при толкании ядра в легкой атлетике).

Однако, в отличие от жизненного опыта, формула (1) дает строгое математическое определение.

Изучая движения материальных точек, мы можем экспериментально определить их ускорения, а затем по формуле (1) найти зависимость силы от положений точек системы. Так мы устанавливаем законы, описывающие взаимодействие материальных точек.

Изучая и систематизируя экспериментальные данные, мы получаем правила, которые позволяют нам определять зависимость силы от времени и от координат в сложных случаях, основываясь на более простых.

Так если нам известна зависимость вектора от времени и от координат: , то формула (1) представляет собой систему дифференциальных уравнений:

Решая ее, можно найти закон движения точки.

Сила – это векторная величина

В формуле (1):   ,   m есть скаляр, то есть число, не зависящее от координат и времени. Ускорение    есть вектор. Тогда сила является вектором. Это означает, что если мы выберем прямоугольную систему координат , то сила имеет три проекции на ее оси: .

То есть, в математическом смысле, сила определяется тремя числами – тремя компонентами или проекциями на оси координат. Разумеется, если мы будем рассматривать движение в плоскости, то есть в двухмерном пространстве, то в нем прямоугольная система координат имеет только две оси .

Тогда и сила, как и любой вектор в этой системе, имеет только две проекции (или компоненты).

Поскольку сила – это вектор, то к ней применимы все формулы, применяемые к векторам в аналитической геометрии.

Скользящие векторы

Теперь рассмотрим абсолютно твердое тело. Законы его движения имеют более сложный вид. Они описываются двумя векторными уравнениями:
(2)   ;
(3)   .
Здесь – ускорение центра масс тела; M – его масса; – момент импульса тела относительно произвольно выбранного центра C; – внешние силы, действующие на тело, приложенные в точках .

Вместо того, чтобы пытаться в лоб решать эти уравнения, давайте попробуем вывести некоторые закономерности, заключенные в этих уравнениях. Для этого упростим задачу. Рассмотрим тело в некоторый момент времени t. И пусть, для этого момента времени, нам известны действующие на него силы и точки их приложения .

Уравнение (2) не зависит от точек приложения Ak сил. Для его составления требуется знать только проекции сил на оси координат . А вот в уравнение (3) входят точки приложения. Они входят в виде векторов, проведенных из некоторого центра C в точку Ak. Причем входят в виде векторного произведения .

Согласно одному из свойств, векторное произведение векторов, имеющих одинаковое направление, равно нулю. Поэтому . Тогда если к вектору прибавить любой вектор, параллельный , то векторное произведение не изменится:
.
Здесь – произвольная постоянная, имеющая размерность м/Н.

Отсюда следует важный вывод. Если точку приложения силы переместить на любое расстояние вдоль линии действия силы, то уравнения движения твердого тела не изменятся.

В связи с этим, вместо обычного в математическом определении вектора, можно ввести новый математический объект, называемый скользящим вектором.

Скользящий вектор по существу есть множество, состоящее из двух векторов – самого вектора силы (так называемый образующий вектор) и его точки приложения относительно выбранного центра системы отсчета . В связи с этим, приводим следующие определения.

Скользящий вектор – это множество, состоящее из образующего вектора и точки его приложения, обладающее тем свойством, что точку приложения можно перемещать вдоль прямой, проведенной через образующий вектор. То есть два скользящих вектора считаются равными, если равны образующие векторы и точки их приложения расположены на прямой, проходящей через них.

Наряду со скользящим вектором, мы можем ввести понятия закрепленных и свободных векторов.

Закрепленный вектор – это множество, состоящее из образующего вектора и точки его приложения. Два фиксированных вектора считаются равными только в том случае, если равны их образующие векторы и совпадают точки приложения. Закрепленный вектор также называют связанным или фиксированным вектором. Свободный вектор – это множество, состоящее из образующего вектора и точки его приложения. Два свободных вектора считаются равными, если равны образующие векторы, не зависимо от точек приложения.

Таким образом, свободный вектор не зависит от точки приложения, и является просто вектором. Для справок также приведем определение вектора.

Вектор в трехмерном пространстве – это три числа, называемые компонентами, связанные с предварительно выбранной прямоугольной системой координат, которые при поворотах этой системы вокруг ее центра O, и при отражении осей, преобразуются по тому же закону, что и координаты произвольной точки A, не совпадающей с O. Компоненты вектора также называются проекциями вектора на оси координат.

Если мы рассматриваем деформации в телах, то все приложенные силы нужно рассматривать как связанные векторы, поскольку внутренние напряжения и деформации зависят от точек приложения сил.

Но если мы считаем тело абсолютно твердым, и нам нужно определить только траекторию его движения, то, как показано выше, силы являются скользящими векторами.

То есть в теоретической механике мы можем обращаться с силами более свободно, чем при решении других задач – точки приложения сил можно перемещать вдоль линий их действия.

Таким образом, в теоретической механике, над силами мы можем выполнять следующие преобразования.
1) Переносить точку приложения силы на любое расстояние вдоль линии ее действия.

2) Раскладывать силу по правилу параллелограмма на две или более сил, каждая из которых приложена в той точке, что исходная сила – то есть можно заменить исходную силу на несколько сил, векторная сумма которых равна исходной.

3) Несколько сил, приложенных к одной точке можно объединять в одну, применяя правило параллелограмма – то есть можно заменить несколько сил, приложенных в одной точке их векторной суммой, приложенной в той же точке.

Такие преобразования называются эквивалентными преобразованиями сил. А системы, полученные в результате таких преобразований, называются эквивалентными системами сил. На странице «Аксиомы статики» приводится иллюстрация подобных преобразований. См.

«Пример решения задачи, используя аксиомы статики». Таким образом, в теоретической механике, силы являются некоторыми расчетными величинами. Их можно преобразовывать для того, чтобы получить более простую систему сил и упростить уравнения движения тел.

Рассмотрим следующий пример. Пусть мы имеем тело, на которое действует сила тяжести Земли. Эта сила приложена ко всем точкам. На любую малую часть тела, массой , действует сила тяжести , где – ускорение свободного падения. То есть на тело действует система сил, равномерно распределенных по его объему. Решать уравнения движения с такими силами неудобно.

Поэтому в начале, проще выполнить эквивалентные преобразования. В результате таких преобразований все силы тяжести малых элементов тела можно заменить одной силой , приложенной к центру масс тела с радиус-вектором . Тем самым мы пришли к уравнениям движения, в которых на тело действует одна сила.

Естественно, что это не реальная сила, действующая в центре масс, а расчетная величина, эквивалентная распределенным по объему тела силам.

Здесь мы разбили тело на материальные точки, каждая из которых имеет массу и положение в пространстве, задаваемое радиус-вектором . Тогда – масса тела. Суммирование выполняется по всем точкам, составляющим тело.

Статика и эквивалентные преобразования сил

Снова рассмотрим уравнения движения твердого тела:
(2)   ;
(3)   .
Пусть в момент времени t нам известны внешние силы , действующие на тело. Далее мы можем попытаться упростить систему сил, сведя ее эквивалентными преобразованиями к новой системе .

В следующий момент времени, силы могут измениться и нам потребуется выполнять новые эквивалентные преобразования. В этом, конечно, ничего хорошего нет. Но, возможно, нам удастся найти эквивалентные преобразования аналитическим способом, то есть получить аналитическое выражение для новых сил , пригодное для любого момента времени.

Тогда вместо (2) и (3) мы получим систему уравнений с более простой системой сил:
(2′)   ;
(3′)   .

Теперь из уравнений (2) и (3) вычтем уравнения (2′) и (3′):
(4)   ;
(5)   .
Но это есть ни что иное, как уравнения статики, в которых к исходной системе сил добавили эквивалентную систему, изменив направления на противоположные.

Отсюда следует вывод, что для получения эквивалентной системы сил, нужно к исходной системе, добавить новую систему сил так, чтобы тело находилось в равновесии. Тогда эквивалентная система будет совпадать с новой, в которой направления сил заменены на противоположные.

Единицы измерения силы

В СИ единицей измерения силы является Ньютон. Обозначается Н. Международное обозначение N. Сила F с абсолютным значением в 1 Ньютон обозначается так:
F = 1 Н. Из уравнения (1) получаем:

.

В СГС единицей измерения силы является дин. Обозначается дин. Международное обозначение dyn.
;   .

В МКГСС единицей измерения силы является килограмм-сила. Это основная единица этой системы (наряду с метром и секундой). Обозначается кгс или кГ. Международное обозначение kgf или kgF.
.

Олег Одинцов.     : 05-09-2019

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.